• 제목/요약/키워드: Sensor fault diagnosis

검색결과 151건 처리시간 0.027초

RNN 기반 디지털 센서의 Rising time과 Falling time 고장 검출 기법 (An RNN-based Fault Detection Scheme for Digital Sensor)

  • 이규형;이영두;구인수
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.29-35
    • /
    • 2019
  • 4차 산업 혁명이 진행되며 많은 회사들의 스마트 팩토리에 대한 관심이 커지고 있으며 센서의 중요성 또한 대두되고 있다. 정보를 수집하기 위한 센서에서 고장이 발생하면 공장을 최적화하여 운영할 수 없기 때문에 이에 따른 손해가 발생할 수 있다. 이를 위해 센서의 상태를 진단하여 센서의 고장을 진단하는 일이 필요하다. 본 논문에서는 디지털 센서의 고장유형 중 Rising time과 Falling time 고장을 딥러닝 알고리즘 RNN의 LSTM을 통해 신호를 분석하여 고장을 진단하는 모델을 제안한다. 제안한 방식의 실험 결과를 정확도와 ROC 곡선 그래프의 AUC(Area under the curve)를 이용하여 Rule 기반 고장진단 알고리즘과 비교하였다. 실험 결과, 제안한 시스템은 Rule 기반 고장진단 알고리즘 보다 향상되고 안정된 성능을 보였다.

직접토크제어 유도전동기 구동 서보시스템을 위한 장치고장 진단 기법 (An Instrument Fault Diagnosis Scheme for Direct Torque Controlled Induction Motor Driven Servo Systems)

  • 이기상;유지수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.241-251
    • /
    • 2002
  • The effect of sensor faults in direct torque control(DTC) based induction motor drives is analyzed and a new Instrument fault detection isolation scheme(IFDIS) is proposed. The proposed IFDIS, which operated in real-time, detects and isolates the incipient fault(s) of speed sensor and current sensors that provide the feedback information. The scheme consists of an adaptive gain scheduling observer as a residual generator and a special sequential test logic unit. The observer provides not only the estimate of stator flux, a key variable in DTC system, but also the estimates of stator current and rotor speed that are useful for fault detection. With the test logic, the IFDIS has the functionality of fault isolation that only multiple estimator based IFDIS schemes can have. Simulation results for various type of sensor faults show the detection and isolation performance of the IFDIS and the applicability of this scheme to fault tolerant control system design.

Fault diagnosis system using qualitative models and interpreters

  • Shin, S.;Lee, Seon-Ho;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.275-278
    • /
    • 1996
  • This fault diagnosis system consists of qualitative models, qualitative interpreter, and inference engine. Qualitative models are formed by analysis of the relationships between faults and behaviors of sensor trends, which are described by state transition trees. Qualitative interpreter outputs confidence factors with three qualitative quantities which represent the states of sensor trends. And then, the possible faults are detected by inference module which matches the states of trends within a window size with the qualitative models using the well-known min-max operation.

  • PDF

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • 제2권1호
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

모터펌프의 지능형 진단시스템 구현에 관한 연구 (A Study on the Implementation of Intelligent Diagnosis System for Motor Pump)

  • 안재현;양오
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.87-91
    • /
    • 2019
  • The diagnosis of the failure for the existing electrical facilities was based on regular preventive maintenance, but this preventive maintenance was limited in preventing a lot of cost loss and sudden system failure. To overcome these shortcomings, fault prediction and diagnostic techniques are critical to increasing system reliability by monitoring electrical installations in real time and detecting abnormal conditions in the facility early. As the performance and quality deterioration problem occurs frequently due to the increase in the number of users of the motor pump, the purpose is to build an intelligent control system that can control the motor pump to maximize the performance and to improve the quality and reliability. To this end, a vibration sensor, temperature sensor, pressure sensor, and low water level sensor are used to detect vibrations, temperatures, pressures, and low water levels that can occur in the motor pump, and to build a system that can identify and diagnose information to users in real time.

단일 안테나 GPS 수신기를 이용한 관성센서의 고장검출 및 분리 (Fault Detection and Isolation for Inertial Sensor Using Single Antenna GPS Receiver)

  • 김영진;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1037-1043
    • /
    • 2004
  • In this paper, a new fault detection and isolation algorithm fur inertial sensor system is proposed. To identify the inertial sensor fault, single antenna GPS receiver is used as an effective redundancy source. To use GPS receiver as redundancy for the inertial sensors, the algorithm to estimate the attitude and acceleration using single antenna GPS receiver is adopted. By using Doppler shift of carrier phase signal and kinetic characteristics of aircraft, attitude information of aircraft can be obtained at the coordinated flight condition. Based on this idea, fault diagnosis algorithm for inertial sensors using single antenna GPS based attitude is proposed. For more effective FDI, decision variables considering the aircraft maneuver are proposed. The effectiveness of the proposed algorithm is verified through the numerical simulations.

딥 러닝 기반 실시간 센서 고장 검출 기법 (Timely Sensor Fault Detection Scheme based on Deep Learning)

  • 양재완;이영두;구인수
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.163-169
    • /
    • 2020
  • 최근 4차 산업혁명의 핵심기술인 인공지능, 빅데이터, 사물인터넷의 발전으로 산업 현장에서 가동되는 기계의 자동화 및 무인화에 대한 연구가 활발히 진행되고 있다. 이러한 공정 기계들은 부착된 다양한 센서들로부터 수집된 데이터를 기반으로 제어되고 이를 통해 공정이 관리된다. 만약 센서에 고장이 발생한다면 센서 데이터 이상으로 인해 자동화 기계들이 오작동함으로써 공정 손실 발생뿐만 아니라 인명피해로도 이어질 수 있다. 전문가가 센서의 이상 여부를 주기적으로 확인하여 관리하고 있으나 산업 현장의 여러 가지 환경요인 및 상황으로 인하여 고장점검 시기를 놓치거나 고장을 발견하지 못하여 센서 고장으로 인한 피해를 막지 못하는 경우가 발생하고 있다. 또한 고장이 발생하여도 즉각 감지하지 못함으로써 공정 손실을 더욱 악화시키고 있는 실정이다. 따라서 이러한 돌발적인 센서 고장으로 인한 피해를 막기 위해 자체적으로 임베디드 시스템에서 센서의 고장 유무를 실시간으로 파악하고 빠른 대응을 위해 고장 진단 및 유형을 판별하는 것이 필요하다. 본 논문에서는 대표적인 센서 고장 유형인 erratic fault, hard-over fault, spike fault, stuck fault를 분류하기 위해 딥 뉴럴 네트워크 기반의 고장 진단 시스템을 설계하고 라즈베리 파이를 활용하여 구현하였다. 센서 고장 진단을 위해 구글이 제안한 MobilieNetV2의 Inverted residual block 구조를 사용하여 네트워크를 구성하였다. 본 논문에서 제안하는 방식은 기존 CNN 기법을 사용한 경우보다 메모리 사용량이 줄고 성능이 향상되며, 입력 신호에 대해 구간별로 센서 고장을 분류하여 산업 현장에서 효과적으로 사용될 것으로 기대된다.

가공공정의 이상상태진단을 위한 진단전문가시스템의 개발 (Development of Diagnostic Expert System for Machining Process Ffailure Detection)

  • 유송민;김영진
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.147-153
    • /
    • 1997
  • Fault diagnosis technique in machining system which is one of engineering techniques absolutely necessary to automation of manufacturing system has been proposed. As a whole, diagnosis process is explained by two steps: sensor data acquisition and reasoning current state of system with the given sensor data. Flexible disk grinding process implemented in milling machine was employed in order to obtain empirical manufacturing process information. Resistance force data during machining were acquired using tool dynamometer known as sensor which is comparably accurate and reliable in operation. Tool status during the process was analyzed using influnece diagram assigning probability from the statistical analysis procedure.

  • PDF

Steer-by-Wire 시스템의 감지기에 대한 강인한 이상진단기법 (A Robust Method of Fault Diagnosis for Steer-by-Wire System's Sensor)

  • 문승욱;지용관;허건수;조동일;박장현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1463-1467
    • /
    • 2005
  • This paper proposes an analytical redundancy technique for fault diagnostics of the sensor in steer-by-wire system. We use incorporating vehicle dynamics modeling into the design of a diagnostic system for steer-by-wire system. The use of a model of vehicle dynamics improves the speed and accuracy of the diagnoses. The proposed fault diagnostics algorithm is based on parity-space methods to generate residuals. To reduce the effects of modeling uncertainty and dynamic transients, the residuals are subject to filtering. We construct diagnostic system consisting residual threshold for detection and isolator with using the directional residual vector.

  • PDF

Fault Detection and Diagnosis of the Deaerator Level Control System in Nuclear Power Plants

  • Kim Kyung Youn;Lee Yoon Joon
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.73-82
    • /
    • 2004
  • The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 & 4.