• Title/Summary/Keyword: Sensor failures

Search Result 148, Processing Time 0.024 seconds

Fault Detection and Isolation of System Using Multiple Pi Observers (비례적분(PI) 관측기를 이용한 시스템의 고장진단)

  • Kim, H.S.;Kim, S.B.;Shigeyasu Kawaji
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 1997
  • Fault diagnosis problem is currently a subject of extensive research in the control field. Although there are several works on the fault detection and isolation observers and the residual generators, those are con- cerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation for the actuator and sensor failures is strongly required in the field of the practical applications. In this paper, a strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

Fault diagnosis using multiple PI observers

  • Kim, Hwan-Seong;Ki, Sang-Bong;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.287-290
    • /
    • 1996
  • Fault diagnosis problem is currently the subject of extensive research and numerous survey paper can be found. Although several works are studied on the fault detection and isolation observers and the residual generators, those are concerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation is strongly required for practical applications. In this paper, a, strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

Reliable H Control : A Linlear Matrix Inequality Approach (신뢰성 있는 H 제어 : 선형 행렬 부등식 방법)

  • 이종민;김병국;김성우
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.216-224
    • /
    • 2004
  • In this paper we address reliable output feedback control problem for a class of linear systems with actuator/sensor failures. An output feedback control method is proposed which stabilizes the plant and guarantees $H_\inftyt$-norm constraint against all admissible actuator/sensor failures. The controller can be obtainer by solving some LMls that cover all failure cases. Effectiveness of this controller is validated via a numerical example. This paper addresses reliable output feedback control problem for a class of linear systems with actuator/sensor failures. An output feedback control method is proposed which stabilizes the plant and guarantees $H_\inftyt$-norm constraint against all admissible actuator/sensor failures. The controller can be obtained by solving some LMls that cover all failure cases. Effectiveness of this controller is validated via numerical example.

A Study on the Fault Tolerant Control System for Aircraft Sensor and Actuator Failures via Neural Networks (신경회로망을 이용한 항공기 센서 및 구동장치 고장보완 제어시스템 설계에 관한 연구)

  • Song, Yong Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.171-179
    • /
    • 2003
  • In this paper a neural network-based fault tolerant control system for aircraft sensor and actuator failures is considered. By exploiting flight dynamic relations a set of neural networks is constructed to detect sensor failure and give alternative signal for the faulty sensor. For actuator failures another set of neural networks is designed to perform fault detection, identification, and accomodation which returns the aircraft to a new stable trim. Integrated system is simulated to show the performance of the system with sensor and control surface failures.

  • PDF

Design of Fault tolerant controller for electromagentic suspenstion system (자기부상 시스템에서의 내 고장성 제어기 설계)

  • Jang, Seok-Myeong;Sung, So-Young;Kim, In-Kun;Sung, Ho-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.70-72
    • /
    • 1999
  • Actuator (chopper) and sensors failures resulting from electric shock and mechanical vibration generating by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes the reliable output feedback controller for the electromagnetic levitation systems against actuator, air-gap sensor and acceleration sensor failures. The designed controller is an extend version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the experimental results for the proposed controller against chopper, air-gap sensor and acceleration sensor failures of electromagnetic levitation system.

  • PDF

Design of Fault Tolerant Controller for Electromagnetic Supension System (자기부상시스템에서의 내고장성 제어기 설계)

  • Seong, Ho-Gyeong;Jo, Heung-Jae;Jeong, Seok-Yeong;Seong, So-Yeong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF

Centralized Kalman Filter with Adaptive Measurement Fusion: its Application to a GPS/SDINS Integration System with an Additional Sensor

  • Lee, Tae-Gyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.444-452
    • /
    • 2003
  • An integration system with multi-measurement sets can be realized via combined application of a centralized and federated Kalman filter. It is difficult for the centralized Kalman filter to remove a failed sensor in comparison with the federated Kalman filter. All varieties of Kalman filters monitor innovation sequence (residual) for detection and isolation of a failed sensor. The innovation sequence, which is selected as an indicator of real time estimation error plays an important role in adaptive mechanism design. In this study, the centralized Kalman filter with adaptive measurement fusion is introduced by means of innovation sequence. The objectives of adaptive measurement fusion are automatic isolation and recovery of some sensor failures as well as inherent monitoring capability. The proposed adaptive filter is applied to the GPS/SDINS integration system with an additional sensor. Simulation studies attest that the proposed adaptive scheme is effective for isolation and recovery of immediate sensor failures.

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

Design of Complex Fault Detection and Isolation for Sensor and Actuator by Using Unknown Input PI Observer (미지 입력 PI 관측기를 이용한 센서 및 구동기의 복합 고장진단)

  • 김환성
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.437-441
    • /
    • 1999
  • In this paper, a fault diagnosis method using unknown-input proportional integral (PI) observers including the magnitude of actuator failures is proposed. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between the actual output and the estimated output using an unknown-input PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple unknown-input PI observers perfectly.

  • PDF

A 2MC-based Framework for Sensor Data Loss Decrease in Wireless Sensor Network Failures (무선센서네트워크 장애에서 센서 데이터 손실 감소를 위한 2MC기반 프레임워크)

  • Shin, DongHyun;Kim, Changhwa
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.31-40
    • /
    • 2016
  • Wireless sensor networks have been used in many applications such as marine environment, army installation, etc. The sensor data is very important, because all these applications depend on sensor data. The possibility of communication failures becomes high since the surrounding environment of a wireless sense network has an sensitive effect on its communications. In particular, communication failures in underwater communications occur more frequently because of a narrow bandwidth, slow transmission speed, noises from the surrounding environments and so on. In cases of communication failures, the sensor data can be lost in the sensor data delivery process and these kinds of sensor data losses can make critical huge physical damages on human or environments in applications such as fire surveillance systems. For this reason, although a few of studies for storing and compressing sensor data have been proposed, there are lots of difficulties in actual realization of the studies due to none-existence of the framework using network communications. In this paper, we propose a framework for reducing loss of the sensor data and analyze its performance. The our analyzed results in non-framework application show a decreasing data recovery rate, T/t, as t time passes after a network failure, where T is a time period to fill the storage with sensor data after the network failure. Moreover, all the sensor data generated after a network failure are the errors impossible to recover. But, on the other hand, the analyzed results in framework application show 100% data recovery rate with 2~6% data error rate after data recovery.