• Title/Summary/Keyword: Sensor clustering

Search Result 516, Processing Time 0.027 seconds

A Clustering Protocol with Mode Selection for Wireless Sensor Network

  • Kusdaryono, Aries;Lee, Kyung-Oh
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.29-42
    • /
    • 2011
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.

An energy efficient clustering scheme by adjusting group size in zigbee environment (Zigbee 환경에서 그룹 크기 조정에 의한 에너지 효율적인 클러스터링 기법)

  • Park, Jong-Il;Lee, Kyoung-Hwa;Shin, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.342-348
    • /
    • 2010
  • The wireless sensor networks have been extensively researched. One of the issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to extend the lifetime of a wireless sensor networks. In this paper, we proposed an energy efficient clustering scheme by adjusting group size. In sensor network, the power consumption in data transmission between sensor nodes is strongly influenced by the distance of two nodes. And cluster size, that is the number of cluster member nodes, is also effected on energy consumption. Therefore we proposed the clustering scheme for high energy efficiency of entire sensor network by controlling cluster size according to the distance between cluster header and sink.

Implementation of a Top-down Clustering Protocol for Wireless Sensor Networks (무선 네트워크를 위한 하향식 클러스터링 프로토콜의 구현)

  • Yun, Phil-Jung;Kim, Sang-Kyung;Kim, Chang-Hwa
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.95-106
    • /
    • 2010
  • Many researches have been performed to increase energy-efficiency in wireless sensor networks. One of primary research topics is about clustering protocols, which are adopted to configure sensor networks in the form of hierarchical structures by grouping sensor nodes into a cluster. However, legacy clustering protocols do not propose detailed methods from the perspective of implementation to determine a cluster's boundary and configure a cluster, and to communicate among clusters. Moreover, many of them involve assumptions inappropriate to apply those to a sensor field. In this paper, we have designed and implemented a new T-Clustering (Top-down Clustering) protocol, which takes into considerations a node's density, a distance between cluster heads, and remained energy of a node all together. Our proposal is a sink-node oriented top-down clustering protocol, and can form uniform clusters throughout the network. Further, it provides re-clustering functions according to the state of a network. In order to verify our protocol's feasibility, we have implemented and experimented T-Clustering protocol on Crossbow's MICAz nodes which are executed on TinyOS 2.0.2.

Data Correlation-Based Clustering Algorithm in Wireless Sensor Networks

  • Yeo, Myung-Ho;Seo, Dong-Min;Yoo, Jae-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.331-343
    • /
    • 2009
  • Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.

A Relative Location based Clustering Algorithm for Wireless Sensor Networks (센서의 상대적 위치정보를 이용한 무선 센서 네트워크에서의 클러스터링 알고리즘)

  • Jung, Woo-Hyun;Chang, Hyeong-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.212-221
    • /
    • 2009
  • This paper proposes a novel centralized clustering algorithm, "RLCA : Relative Location based Clustering Algorithm for Wireless Sensor Networks," for constructing geographically well-distributed clusters in general WSNs. RLCA does not use GPS and controls selection-rate of cluster-head based on distances between sensors and BS. We empirically show that RLCA's energy efficiency is higher than LEACH's.

Fundamental Considerations: Impact of Sensor Characteristics, Application Environments in Wireless Sensor Networks

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • Observed from the recent performance evaluation of clustering schemes in wireless sensor networks, we found that most of them did not consider various sensor characteristics and its application environment. Without considering these, the performance evaluation results are difficult to be trusted because these networks are application-specific. In this paper, for the fair evaluation, we measured several clustering scheme's performance variations in accordance with sensor data pattern, number of sensors per node, density of points of interest (data density) and sensor coverage. According to the experiment result, we can conclude that clustering methods are easily influenced by POI variation. Network lifetime and data accuracy are also slightly influenced by sensor coverage and number of sensors. Therefore, in the case of the clustering scheme that did not consider various conditions, fair evaluation cannot be expected.

A Dual-layer Energy Efficient Distributed Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 이중 레이어 분산 클러스터링 기법)

  • Yeo, Myung-Ho;Kim, Yu-Mi;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.84-95
    • /
    • 2008
  • Wireless sensor networks have recently emerged as a platform for several applications. By deploying wireless sensor nodes and constructing a sensor network, we can remotely obtain information about the behavior, conditions, and positions of objects in a region. Since sensor nodes operate on batteries, energy-efficient mechanisms for gathering sensor data are indispensable to prolong the lifetime of a sensor network as long as possible. In this paper, we propose a novel clustering algorithm that distributes the energy consumption of a cluster head. First, we analyze the energy consumption if cluster heads and divide each cluster into a collection layer and a transmission layer according to their roles. Then, we elect a cluster head for each layer to distribute the energy consumption of single cluster head. In order to show the superiority of our clustering algorithm, we compare it with the existing clustering algorithm in terms of the lifetime of the sensor network. As a result, our experimental results show that the proposed clustering algorithm achieves about $10%{\sim}40%$ performance improvements over the existing clustering algorithms.

Energy-Efficient Cluster Head Selection Method in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적 클러스터 헤드 선정 기법)

  • Nam, Choon-Sung;Jang, Kyung-Soo;Shin, Ho-Jin;Shin, Dong-Ryeol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2010
  • Wireless sensor networks is composed of many similar sensor nodes with limited resources. They are randomly scattered over a specific area and self-organize the network. For guarantee of network life time, load balancing and scalability in sensor networks, sensor networks needs the clustering algorithm which distribute the networks to a local cluster. In existing clustering algorithms, the cluster head selection method has two problems. One is additional communication cost for finding location and energy of nodes. Another is unequal clustering. To solve them, this paper proposes a novel cluster head selection algorithm revised previous clustering algorithm, LEACH. The simulation results show that the energy compared with the previous clustering method is reduced.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.