Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.
The wireless sensor networks have been extensively researched. One of the issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to extend the lifetime of a wireless sensor networks. In this paper, we proposed an energy efficient clustering scheme by adjusting group size. In sensor network, the power consumption in data transmission between sensor nodes is strongly influenced by the distance of two nodes. And cluster size, that is the number of cluster member nodes, is also effected on energy consumption. Therefore we proposed the clustering scheme for high energy efficiency of entire sensor network by controlling cluster size according to the distance between cluster header and sink.
Many researches have been performed to increase energy-efficiency in wireless sensor networks. One of primary research topics is about clustering protocols, which are adopted to configure sensor networks in the form of hierarchical structures by grouping sensor nodes into a cluster. However, legacy clustering protocols do not propose detailed methods from the perspective of implementation to determine a cluster's boundary and configure a cluster, and to communicate among clusters. Moreover, many of them involve assumptions inappropriate to apply those to a sensor field. In this paper, we have designed and implemented a new T-Clustering (Top-down Clustering) protocol, which takes into considerations a node's density, a distance between cluster heads, and remained energy of a node all together. Our proposal is a sink-node oriented top-down clustering protocol, and can form uniform clusters throughout the network. Further, it provides re-clustering functions according to the state of a network. In order to verify our protocol's feasibility, we have implemented and experimented T-Clustering protocol on Crossbow's MICAz nodes which are executed on TinyOS 2.0.2.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.3
no.3
/
pp.331-343
/
2009
Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.
This paper proposes a novel centralized clustering algorithm, "RLCA : Relative Location based Clustering Algorithm for Wireless Sensor Networks," for constructing geographically well-distributed clusters in general WSNs. RLCA does not use GPS and controls selection-rate of cluster-head based on distances between sensors and BS. We empirically show that RLCA's energy efficiency is higher than LEACH's.
Observed from the recent performance evaluation of clustering schemes in wireless sensor networks, we found that most of them did not consider various sensor characteristics and its application environment. Without considering these, the performance evaluation results are difficult to be trusted because these networks are application-specific. In this paper, for the fair evaluation, we measured several clustering scheme's performance variations in accordance with sensor data pattern, number of sensors per node, density of points of interest (data density) and sensor coverage. According to the experiment result, we can conclude that clustering methods are easily influenced by POI variation. Network lifetime and data accuracy are also slightly influenced by sensor coverage and number of sensors. Therefore, in the case of the clustering scheme that did not consider various conditions, fair evaluation cannot be expected.
Wireless sensor networks have recently emerged as a platform for several applications. By deploying wireless sensor nodes and constructing a sensor network, we can remotely obtain information about the behavior, conditions, and positions of objects in a region. Since sensor nodes operate on batteries, energy-efficient mechanisms for gathering sensor data are indispensable to prolong the lifetime of a sensor network as long as possible. In this paper, we propose a novel clustering algorithm that distributes the energy consumption of a cluster head. First, we analyze the energy consumption if cluster heads and divide each cluster into a collection layer and a transmission layer according to their roles. Then, we elect a cluster head for each layer to distribute the energy consumption of single cluster head. In order to show the superiority of our clustering algorithm, we compare it with the existing clustering algorithm in terms of the lifetime of the sensor network. As a result, our experimental results show that the proposed clustering algorithm achieves about $10%{\sim}40%$ performance improvements over the existing clustering algorithms.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.10
no.2
/
pp.25-30
/
2010
Wireless sensor networks is composed of many similar sensor nodes with limited resources. They are randomly scattered over a specific area and self-organize the network. For guarantee of network life time, load balancing and scalability in sensor networks, sensor networks needs the clustering algorithm which distribute the networks to a local cluster. In existing clustering algorithms, the cluster head selection method has two problems. One is additional communication cost for finding location and energy of nodes. Another is unequal clustering. To solve them, this paper proposes a novel cluster head selection algorithm revised previous clustering algorithm, LEACH. The simulation results show that the energy compared with the previous clustering method is reduced.
Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.
In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.