• Title/Summary/Keyword: Sensor Value Validation

Search Result 19, Processing Time 0.023 seconds

A Sensor Value Validation Technique taking account of the Error Propagation among the Sensor Values in Causal Relation (인과관계내에서 계측값들의 오차파급을 고려한 계측값 검증 기법에 관한 연구)

  • Lee, S.C.;Uh, R.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2275-2277
    • /
    • 1998
  • This paper presents an algorithmic sensor value validation technique that can systematically explore the embedded sensor redundancies in complex physical systems and maximize their utilization in validating sensor values. The confidency criteria are developed for checking the consistency of sensor relationships called Causal Relations. Development results are applied to a tubular type supercritical pressure type thermal power plant with rated operational data to demonstrate the effectiveness of the proposed technique.

  • PDF

A Sensor Value Validation Technique for Supporting Stable Operations of Thermal Power Plants (화력발전소의 안정운전 지원을 위한 계측값 검증 기법에 관한 연구)

  • Lee, Seung-Chul;Kim, Seung-Jin;Han, Seung-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.201-209
    • /
    • 2009
  • In power plant operations, sensor values often exhibit erroneous values due to their failures or the intrusions of various noises. However, most of the power plant monitoring and fault diagnosis systems perform their tasks based on the assumptions that the collected sensor values are correct all the times. These assumptions, which are not valid, often lead to serious consequences such as power plant trips. In this paper, we propose a power plant sensor value validation technique that can utilize the relationships existing among the sensor values as the sensor redundancy. The proposed technique is applied to the flow meters installed along boiler feed water systems of a typical tubular type boiler thermal power plant and shows a good potential of future applications.

An Indoor Localization Algorithm based on Improved Particle Filter and Directional Probabilistic Data Association for Wireless Sensor Network

  • Long Cheng;Jiayin Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3145-3162
    • /
    • 2023
  • As an important technology of the internetwork, wireless sensor network technique plays an important role in indoor localization. Non-line-of-sight (NLOS) problem has a large effect on indoor location accuracy. A location algorithm based on improved particle filter and directional probabilistic data association (IPF-DPDA) for WSN is proposed to solve NLOS issue in this paper. Firstly, the improved particle filter is proposed to reduce error of measuring distance. Then the hypothesis test is used to detect whether measurements are in LOS situations or NLOS situations for N different groups. When there are measurements in the validation gate, the corresponding association probabilities are applied to weight retained position estimate to gain final location estimation. We have improved the traditional data association and added directional information on the original basis. If the validation gate has no measured value, we make use of the Kalman prediction value to renew. Finally, simulation and experimental results show that compared with existing methods, the IPF-DPDA performance better.

Validation of Sensing Data Based on Prediction and Frequency (예측 및 빈도 기반의 센싱데이터 신뢰도 판단 기법)

  • Lee, SunYoung;Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1398-1405
    • /
    • 2016
  • As wireless sensor networks become eligible as well as useful in several controled systems where surrounding environments are likely to be monitored, their stabilization become important research challenge. Generally, stabilization is mostly dependent on reliability of sensing value. To achieve such reliability in wireless sensor networks, the most of previous research work have tendency to deploy the same type of multiple sensor units on one node. However, these mechanisms lead to deployment problem by increasing cost of sensor node. Moreover, it may decrease reliability in the operation due to complex design. In order to solve this problem, in this paper, we propose a new validation scheme which is based on prediction and frequency value. In the proposed scheme, we take into exceptional cases account, for example, outbreak of fire. Finally, we demonstrate that the proposed scheme can detect abnormal sensing value more than 13 percent as compared to previous work through diverse simulation scenarios.

Development of an Portable Urine Glucose Monitoring System (휴대용 뇨당 측정 시스템의 개발)

  • 박호동;이경중;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.397-403
    • /
    • 2002
  • Urine glucose monitoring system is a self-monitoring system that display the glucose level by non-invasive measurement method. In this paper, We developed a noninvasive urine glucose monitoring system that improved defects of urine glucose measurement with a colorimeter method and invasive blood glucose measurement method. This system consist of bio-chemical sensor for urine glucose measurements, signal detecting part, digital and signal analysis part, display part and power supplying part. The developed bio-chemical sensor for the measurement of urine glucose has good reproducibility, convenience of handing and can be mass-produced with cheap price. To evaluate the performance of the developed system, We performed the evaluation of confidence about the detection of glucose level by a comparison between a standard instrument in measuring glucose level and the developed system using standard glucose solutions mixed with urine. Standard error was 2.85282 from the evaluation of confidence based on regression analysis. Also, In analysis of S.D(standard deviation) and C.V(coefficient of validation) that are important parameters to evaluate system using bio-chemical sensor, S.D was 10% which falls under clinically valid value, 15%, and C.V was under 5%. Consequently from the above results, compared to blood glucose measurement, the system performance is satisfactory.

Vehicle Orientation Estimation by Using Magnetometer and Inertial Sensors (3축 자기장 센서 및 관성센서를 이용한 차량 방위각 추정 방법)

  • Hwang, Yoonjin;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2016
  • The vehicle attitude and sideslip is critical information to control the vehicle to prevent from unintended motion. Many of estimation strategy use bicycle model or IMU integration, but both of them have limits on application. The main purpose of this paper is development of vehicle orientation estimator which is robust to various vehicle state and road shape. The suggested estimator use 3-axis magnetometer, yaw rate sensor and lateral acceleration sensor to estimate three Euler angles of vehicle. The estimator is composed of two individual observers: First, comparing the known magnetic field and gravity with measured value, the TRIAD algorithm calculates optimal rotational matrix when vehicle is in static or quasi-static condition. Next, merging 3-axis magnetometer with inertial sensors, the extended Kalman filter is used to estimate vehicle orientation under dynamic condition. A validation through simulation tools, Carsim and Simulink, is performed and the results show the feasibility of the suggested estimation method.

Activity and Safety Recognition using Smart Work Shoes for Construction Worksite

  • Wang, Changwon;Kim, Young;Lee, Seung Hyun;Sung, Nak-Jun;Min, Se Dong;Choi, Min-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.654-670
    • /
    • 2020
  • Workers at construction sites are easily exposed to many dangers and accidents involving falls, tripping, and missteps on stairs. However, researches on construction site monitoring system to prevent work-related injuries are still insufficient. The purpose of this study was to develop a wearable textile pressure insole sensor and examine its effectiveness in managing the real-time safety of construction workers. The sensor was designed based on the principles of parallel capacitance measurement using conductive textile and the monitoring system was developed by C# language. Three separate experiments were carried out for performance evaluation of the proposed sensor: (1) varying the distance between two capacitance plates to examine changes in capacitance charges, (2) repeatedly applying 1 N of pressure for 5,000 times to evaluate consistency, and (3) gradually increasing force by 1 N (from 1 N to 46 N) to test the linearity of the sensor value. Five subjects participated in our pilot test, which examined whether ascending and descending the stairs can be distinguished by our sensor and by weka assessment tool using k-NN algorithm. The 10-fold cross-validation method was used for analysis and the results of accuracy in identifying stair ascending and descending were 87.2% and 90.9%, respectively. By applying our sensor, the type of activity, weight-shifting patterns for balance control, and plantar pressure distribution for postural changes of the construction workers can be detected. The results of this study can be the basis for future sensor-based monitoring device development studies and fall prediction researches for construction workers.

Portable Piezoelectric Film-based Glove Sensor System for Detecting Internal Defects of Watermelon (수박 내부결함판정을 위한 휴대형 압전형 장갑 센서시스템)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Hak-Jin;Park, Jong-Min;Kato, Koro
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2008
  • Dynamic excitation and response analysis is an acceptable method to determine some of physical properties of agricultural product for quality evaluation. There is a difference in the internal viscoelasticity between sound and defective fruits due to the difference of geometric structures, thereby showing different vibration characteristics. This study was carried out to develop a portable piezoelectric film-based glove sensor system that can separate internally damaged watermelons from sound ones using an acoustic impulse response technique. Two piezoelectric sensors based on polyvinylidene fluoride (PVDF) films to measure an impact force and vibration response were separately mounted on each glove. Various signal parameters including number of peaks, energy ratio, standard deviation of peak to peak distance, zero-crossing rate, and integral value of peaks were examined to develop a regression-estimated model. When using SMLR (Stepwise Multiple Linear Regression) analysis in SAS, three parameters, i.e., zeros value, number of peaks, and standard deviation of peaks were selected as usable factors with a coefficient of determination ($r^2$) of 0.92 and a standard error of calibration (SEC) of 0.15. In the validation tests using twenty watermelon samples (sound 9, defective 11), the developed model provided good capability showing a classification accuracy of 95%.

Validation of an Anthracnose Forecaster to Schedule Fungicide Spraying for Pepper

  • Ahn, Mun-Il;Kang, Wee-Soo;Park, Eun-Woo;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • With the goal of achieving better integrated pest management for hot pepper, a disease-forecasting system was compared to a conventional disease-control method. Experimental field plots were established at Asan, Chungnam, in 2005 to 2006, and hourly temperature and leaf wetness were measured and used as model inputs. One treatment group received applications of a protective fungicide, dithianon, every 7 days, whereas another received a curative fungicide, dimethomorph, when the model-determined infection risk (IR) exceeded a value of 3. In the unsprayed plot, fruits showed 18.9% (2005) and 14.0% (2006) anthracnose infection. Fruits sprayed with dithianon at 7-day intervals had 4.7% (2005) and 15.4% (2006) infection. The receiving model-advised sprays of dimethomorph had 9.4% (2005) and 10.9% (2006) anthracnose infection. Differences in the anthracnose levels between the conventional and model-advised treatments were not statistically significant. The efficacy of 10 (2005) and 8 (2006) applications of calendar-based sprays was same as that of three (2005 and 2006) sprays based on the disease-forecast system. In addition, we found much higher the IRs with the leaf wetness sensor from the field plots comparing without leaf wetness sensor from the weather station at Asan within 10km away. Since the wetness-periods were critical to forecast anthracnose in the model, the measurement of wetness-period in commercial fields must be refined to improve the anthracnose-forecast model.

INTRODUCTION OF J-OFURO LATENT HEAT FLUX VERSION 2

  • Kubota, Masahisa;Hiroyuki, Tomita;iwasaki, Shinsuke;Hihara, Tsutomu;Kawatsura, Ayako
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.306-309
    • /
    • 2007
  • Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO) includes global ocean surface heat flux data derived from satellite data and are used in many studies related to air-sea interaction. Recently latent heat flux data version 2 was constructed in J-OFURO. In version 2 many points are improved compared with version 1. A bulk algorithm used for estimation of latent heat flux is changed from Kondo (1975) to COASRE 3.0(Fairall et al., 2005). In version 1 we used NCEP reanalysis data (Reynolds and Smith, 1994) as SST data. However, the temporal resolution of the data is weekly and considerably low. Recently there are many kinds of global SST data because we can obtain SST data using a microwave radiometer sensor such as TRMM/MI and Aqua/AMSR-E. Therefore, we compared many SST products and determined to use Merged satellite and in situ data Global Daily (MGD) SST provided by Japan Meteorological Agency. Since we use wind speed and specific humidity data derived from one DMSP/SSMI sensor in J-OFURO, we obtain two data at most one day. Therefore, there may be large sampling errors for the daily-mean value. In order to escape this problem, multi-satellite data are used in version 2. As a result we could improve temporal resolution from 3-days mean value in version 1 to daily-mean value in version 2. Also we used an Optimum Interpolation method to estimate wind speed and specific humidity data instead of a simple mean method. Finally the data period is extended to 1989-2004. In this presentation we will introduce latent heat flux data version 2 in J-OFURO and comparison results with other surface latent heat flux data such as GSSTF2 and HOAPS etc. Moreover, we will present validation results by using buoy data.

  • PDF