DOI QR코드

DOI QR Code

Validation of Sensing Data Based on Prediction and Frequency

예측 및 빈도 기반의 센싱데이터 신뢰도 판단 기법

  • Lee, SunYoung (Department of Informatics, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Ki-Il (Department of Informatics, Engineering Research Institute, Gyeongsang National University)
  • Received : 2016.03.08
  • Accepted : 2016.03.30
  • Published : 2016.07.31

Abstract

As wireless sensor networks become eligible as well as useful in several controled systems where surrounding environments are likely to be monitored, their stabilization become important research challenge. Generally, stabilization is mostly dependent on reliability of sensing value. To achieve such reliability in wireless sensor networks, the most of previous research work have tendency to deploy the same type of multiple sensor units on one node. However, these mechanisms lead to deployment problem by increasing cost of sensor node. Moreover, it may decrease reliability in the operation due to complex design. In order to solve this problem, in this paper, we propose a new validation scheme which is based on prediction and frequency value. In the proposed scheme, we take into exceptional cases account, for example, outbreak of fire. Finally, we demonstrate that the proposed scheme can detect abnormal sensing value more than 13 percent as compared to previous work through diverse simulation scenarios.

센서네트워크를 통하여 전송된 센싱값을 이용한 다양한 제어 시스템이 개발됨에 따라 전송된 값을 신뢰할 수 있느냐의 문제는 시스템의 안전성과 귀결된다. 신뢰성 확보를 위한 기존의 알고리즘의 경우 다수의 센서를 중복적으로 장착하는 방법이 주로 사용되었다. 하지만 이 방법들의 경우 센서 노드의 비용 증가를 야기하기 때문에 낮은 가격의 센서의 장점을 이용할 수 없을 뿐만 아니라 복잡한 설계로 인한 신뢰도가 낮아질 수 있다. 이를 해결하기 위하여 본 논문에서는 단일센서를 장착한 상태에서 기존 데이터 기반의 예측값을 통하여 값의 신뢰도를 판단한 뒤 해당 값의 빈도에 따라 데이터의 신뢰도를 확인하는 방안을 제안한다. 또한, 화재발생과 같은 실제 상황이 발생할 경우를 고려하여 메커니즘이 설계되었다. 마지막으로 제안된 방법을 시뮬레이션을 통하여 검증한 결과 기존의 방법에 비하여 다양한 시나리오에서 13%이상의 신뢰도가 높아짐을 확인하였다.

Keywords

References

  1. Y. D. Lee, "Implementation of Greenhouse Environment Monitoring System based on Wireless Sensor Networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 11, pp. 2686-2692, Nov. 2013. https://doi.org/10.6109/jkiice.2013.17.11.2686
  2. S. B. Jang, Gang, W. Shin, S. T. Hong, A. K. Lee, H. M. Park,"USN-based Water Treatment Plant Facilities Data anagement Techniques and Reliability," Journal of the Korea Institute of Information and Communication Engineering, vol. 17, no. 11, pp. 2736-2744, Nov. 2013. https://doi.org/10.6109/jkiice.2013.17.11.2736
  3. I. S. Lee, J. H. Cho, "Real-Time Fault Diagnosis for Tin Oxide Gas Sensors Using Thermal Modulation and an ART-2 Neural Network," Journal of Korean Institute of Information Technology, vol.11, no.2, pp 27-36, Feb. 2013.
  4. S. U. Lee, "Neural Network for Software Reliability Prediction with Unnormalized Data," The Transactions of the Korea Information Processing Society, vol. 7, no. 5, pp. 1419-1425, May 2000..
  5. K. Shim, J. G. Yim, "Estimation of Reliability of a System Based on Two Typed Data," Journal of Korea Multimedia Society, vol. 16, no. 3, pp.336-341, Mar. 2013. https://doi.org/10.9717/kmms.2013.16.3.336
  6. G. Y. Yoon, N. H. Kim, H. K. Choi , D. Y. Jung, S. H. Choi, G. T. Kim, "A Winter Road Weather Information System Using Ubiquitous Sensor Network," Journal of Korea Multimedia Society, vol. 14. no. 3, pp. 393-402, Mar. 2011.
  7. S. S. Lee, M. H. Song, K. H. Won, J. H. Kim. "An Efficient Method for Improving the Reliability of Sensing Data Using Multi-sensors in Wireless Sensor Network Systems," Journal of Information and Telecommunication Facility Engineering, vol. 8. no. 3, pp. 116-121, Sep. 2009.
  8. T. Ryutov, C. Neuman,"Trust based Approach for Improving Data Reliability in Industrial Sensor Networks," Journal of International Federation for Information Processing, vol. 238, pp. 349-365, Jul. 2007.
  9. W. G. Oh, S. K. Lee, "An Effective Algorithm for Diagnosing Sensor Node Faults," Journal of Korea Institute of Electronic Communication Science, vol. 10, no. 2, pp. 283-288, Feb. 2015. https://doi.org/10.13067/JKIECS.2015.10.2.283