• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,892, Processing Time 0.032 seconds

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

The Design of a Ultra-Low Power RF Wakeup Sensor for Wireless Sensor Networks

  • Lee, Sang Hoon;Bae, Yong Soo;Choi, Lynn
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.201-209
    • /
    • 2016
  • In wireless sensor networks (WSNs) duty cycling has been an imperative choice to reduce idle listening but it introduces sleep delay. Thus, the conventional WSN medium access control protocols are bound by the energy-latency tradeoff. To break through the tradeoff, we propose a radio wave sensor called radio frequency (RF) wakeup sensor that is dedicated to sense the presence of a RF signal. The distinctive feature of our design is that the RF wakeup sensor can provide the same sensitivity but with two orders of magnitude less energy than the underlying RF module. With RF wakeup sensor a sensor node no longer requires duty cycling. Instead, it can maintain a sleep state until its RF wakeup sensor detects a communication signal. According to our analysis, the response time of the RF wakeup sensor is much shorter than the minimum transmission time of a typical communication module. Therefore, we apply duty cycling to the RF wakeup sensor to further reduce the energy consumption without performance degradation. We evaluate the circuital characteristics of our RF wakeup sensor design by using Advanced Design System 2009 simulator. The results show that RF wakeup sensor allows a sensor node to completely turn off their communication module by performing the around-the-clock carrier sensing while it consumes only 0.07% energy of an idle communication module.

Sensitivity Measurement of the Piezoelectric Paint Sensor according to the Poling Electric Field (분극 전계에 따른 압전 페인트 센서 감도 측정)

  • Han, Dae-Hyun;Park, Seung-Bok;Kang, Lae-Hyong
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.146-151
    • /
    • 2014
  • In this study, the experimental study has been performed by varying the polarization of the electric field and impact force to check the piezoelectric characteristics of piezoelectric paint sensor. Piezoelectric paint sensor used in this study is composed of epoxy resin with a hardener and PNN-PZT powder in 1:1 weight ratio. The dimensions of the paint sensor specimen are $40{\times}40{\times}1mm^3$ and regular specimens were made using a mold. The voids are removed from the specimen in the vacuum desiccator. Both upper side and bottom side of the paint sensor were coated with silver paste for making an electrode and then dried at room temperature for a day. The poling treatment has been carried out under controlled conditions of the electric field in order to check the effect of piezoelectric sensitivities, while the poling temperature was fixed at room temperature and the poling time was set to 30 min. The piezoelectric sensitivities have been measured by comparing output voltage from paint sensor with output force from impact hammer when the impact hammer hits the paint sensor. In result, the effect of the electric field has been evaluated for the sensitivity and describe the result.

Temperature-Compensative Displacement Sensor based on a Pair of Fiber Bragg Gratings Attached to a Metal Band

  • Kim, Kwang Taek;Kim, Dong Geun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.82-85
    • /
    • 2018
  • This paper proposes a new temperature-compensative displacement sensor with a pair of fiber Bragg gratings (FBG) attached to the inner and outer surfaces of an elastic metal band. The sensor can be also used as a temperature sensor with high sensitivity. The FBG pair shifted Bragg wavelengths in the same direction according to changes in the temperature. However, because the pressure of the metal band shifted a pair of Bragg wavelengths in the opposite direction, the displacement sensor could compensate for the effect of the temperature change in the proposed FBG pair. Results of the experiments showed that the two FBG displacement sensors responded linearly and symmetrically with respect to the displacement, and the displacement could be obtained using the difference between the two Bragg wavelengths.

Surface Acoustic Wave Gas Sensor (탄성표면파 가스센서)

  • Yoo, Beom-Keun;Park, Yong-Wook;Kang, Chong-Yun;Kim, Jin-Sang;Choi, Doo-Jin;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.251-252
    • /
    • 2006
  • A development of surface acoustic wave gas sensor to detecting volatile gas has been observed by monitoring output signal as function of time onto the network analyzer. The SAW sensor with a center frequency of 200MHz was fabricated on $42^{\circ}$ S-T Quartz substrates. Using the gas chromatography column has been selectivity. Experimental results, which show the phase change of output signal under the absorption of volatile gas onto sensors, were presented. The proposed sensor has the properties of high sensitivity compare to the conventional SAW gas sensor and chemical selectivity. Thus, it is thought these results are applicable for use in sensor array of an high performance electronic nose system.

  • PDF

Development of Myoelectric Hand with Infrared LED-based Tactile Sensor (적외선 소자 기반의 촉각센서를 가진 근전의수 개발)

  • Jeong, Dong-Hyun;Chu, Jun-Uk;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.831-838
    • /
    • 2009
  • This paper proposes an IR (infrared) LED (Light Emitting Diode)-based tactile fingertip sensor that can independently measure the normal and tangential force between the hand and an object. The proposed IR LED-based tactile sensor has several advantages over other technologies, including a low price, small size, and good sensitivity. The design of the first prototype is described and some experiments are conducted to show output characteristics of the proposed sensor. Furthemore, the effectiveness of the proposed sensor is demonstrated through anti-slip control in a multifunction myoelectric hand, called the KNU Hand, which includes several novel mechanisms for improved grasping capabilities. The experimental results show that slippage was avoided by simple force control using feedback on the normal and tangential force from the proposed sensor. Thus, grasping force control was achieved without any slippage or damage to the object.

A Study on Characteristics of an IR Sensor with Bluetooth (Bluetooth를 이용한 적외선 센서의 특성에 관한 연구)

  • Park, Sun-Jin;Jeong, Jung-Su
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.79-86
    • /
    • 2006
  • This paper studies the sensitivity analysis of an infrared rays (IR) sensor (SHARP-GD2D12) with bluetooth communication. To evaluate the performance of the IR sensor-bluetooth module, the distance and angle data between the sensor and the fixed object are measured with an IR sensor and the measured data are transferred to PC via bluetooth within 100 meters. This experiment shows that the IR sensor-bluetooth system can be used to measure the distance and angle for a fixed object within 100 meters.

  • PDF

Polymer Micromachined Flexible Tactile Sensor for Three-Axial Loads Detection

  • Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.130-133
    • /
    • 2010
  • A flexible three-axial tactile sensor was fabricated on Kapton polyimide film using polymer micromachining technology. Nichrome (Ni:Cr = 8:2) strain gauges were positioned on an etched membrane to detect normal and shear loads. The optimal positions of strain gauges were determined through strain distribution from finite element analysis. The sensor was evaluated by applying normal and shear loads from 0 N to 0.8 N using an evaluation system. Sensitivity of the tactile sensor to normal and shear loads was about 206.6 mV/N and 70.1 mV/N, respectively. The sensor showed good linearity, and its determination coefficient ($R^2$) was about 0.982. The developed sensor can be applied in a curved or compliant surface that requires slip detection and flexibility, such as a robotic fingertip.

Development of Optical Fiber Coupled Displacement Probe Sensor with a New Compensation Method (보상법을 적용한 광섬유 변위센서의 개발)

  • ;;;P. Sainsot;L. Flamand
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.27-32
    • /
    • 2002
  • The intensity modulated type (reflective method) optical fiber sensor is a well -known method and widely applied to the displacement measurements and other industrial purposes. This type sensor has the advantages of relatively cheap cost, small sensor size and easiness of operation. The sensitivity of the sensor is very dependent of several error terms; the variation in the intensity of the light source and the changes in the surface reflectivity of the object. An optical fiber coupled displacement probe with a new compensation method is presented in this paper. The proposed displacement sensor can measure the displacements of the target surface independent of surface reflectivity error that is caused by the materials and surface processing grade.

Characteristics silicon pressure sensor using dry etching technology (건식식각 기술 이용한 실리콘 압력센서의 특성)

  • Woo, Dong-Kyun;Lee, Kyung-Il;Kim, Heung-Rak;Suh, Ho-Cheol;Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.137-141
    • /
    • 2010
  • In this paper, we fabricated silicon piezoresistive pressure sensor with dry etching technology which used Deep-RIE and etching delay technology which used SOI(silicon-on-insulator) wafer. We improved pressure sensor offset and its temperature dependence by removing oxidation layer of SOI wafer which was used for dry etching delay layer. Sensitivity of the fabricated pressure sensor was about 0.56 mV/V${\cdot}$kPa at 10 kPa full-scale, and nonlinearity of the fabricated pressure sensor was less than 2 %F.S. The zero off-set change rate was less than 0.6 %F.S.