• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,899, Processing Time 0.035 seconds

Amperometric Morphine Detection Using Pt-Co Alloy Nanowire Array-modified Electrode

  • Tao, Manlan;Xu, Feng;Li, Yueting;Xu, Quanqing;Chang, Yanbing;Wu, Zaisheng;Yang, Yun-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1968-1972
    • /
    • 2010
  • Pt-Co alloy nanowire array was directly synthesized by electrochemical deposition with polycarbonate template at -1.0V and subsequent chemical etching of the template. The use of Pt-Co alloy nanowire array-modified electrode (Pt-Co NAE) for the determination of morphine (MO) is described. The morphology of the Pt-Co alloy nanowire array has been investigated by scanning electron microscopy (SEM) and energy disperse X-ray spectroscopy (EDS) analysis), respectively. The resulting Pt-Co NAE offered a linear amperometric response for morphine ranging from $2.35\times10^{-5}$ to $2.39\times10^{-3}$ M with a detection limit of $7.83\times10^{-6}$ M at optimum conditions. This sensor displayed high sensitivity and long-term stability.

Design and Implementation of Smart Cane for Visually Impaired People (시각 장애인을 위한 스마트케인 설계)

  • Ahn, Jeonghwan;Lee, Young-Doo;Koo, Insoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.167-175
    • /
    • 2018
  • Despite the rapid development of IT technology, people with visual impairments still use simple forms of walking sticks and need more advanced walking aids. Smart Cane, which is developed based on Internet service and sensor, can provide high safety and convenience compared to existing sticks for visually impaired people by conveying peripheral information and walking situation to these visually impaired people through voice and vibration. In this paper, we propose and implement SmartKane to overcome lack of miniaturization, user friendly form, and sensing sensitivity, which have been pointed out as a problem of existing SmartKane.

Wafer-Level Packaged MEMS Resonators with a Highly Vacuum-Sensitive Quality Factor

  • Kang, Seok Jin;Moon, Young Soon;Son, Won Ho;Choi, Sie Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.632-639
    • /
    • 2014
  • Mechanical stress and the vacuum level are the two main factors dominating the quality factor of a resonator operated in the vacuum range 1 mTorr to 10 Torr. This means that if the quality factor of a resonator is very insensitive to the mechanical stress in the vacuum range, it is sensitive to mainly the ambient vacuum level. In this paper, a wafer-level packaged MEMS resonator with a highly vacuum-sensitive quality factor is presented. The proposed device is characterized by a package with out-of-plane symmetry and a suspending structure with only a single anchor. Out-of-plane symmetry helps prevent deformation of the packaged device due to thermal mismatch, and a single-clamped structure facilitates constraint-free displacement. As a result, the proposed device is very insensitive to mechanical stress and is sensitive to mainly the ambient vacuum level. The average quality factors of the devices packaged under pressures of 50, 100, and 200 mTorr were 4987, 3415, and 2127, respectively. The results demonstrated the high controllability of the quality factor by vacuum adjustment. The mechanical robustness of the quality factor was confirmed by comparing the quality factors before and after high-temperature storage. Furthermore, through more than 50 days of monitoring, the stability of the quality factor was also certified.

Design of the Magnetic Field Sensing System for Downlink Signal Reception and Interference Cancelling for Through-the-Earth Communication

  • Zhao, Peng;Jiang, Yu-zhong;Zhang, Shu-xia;Ying, Wen-wei
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.330-339
    • /
    • 2016
  • A magnetic field sensing system with a single primary sensor and multiple reference sensors deployed locally and orthogonally, was proposed for downlink signal reception and interference cancelling for Through-the-Earth Communication (TEC). This paper mathematically analyzes a design optimization process for a search coil magnetometer (SCM), and applies that process to minimize the bandwidth of the primary SCM for TEC signal reception and the volume of reference SCMs for multiple distributions. The primary SCM achieves a 3-dB bandwidth of 7 Hz, a sensitivity threshold of 120 fT/${\surd}$Hz, and a volume of $2.32{\times}10^{-4}m^3$. The entire sensing system volume is as small as $10^{-2}m^3$. Experiments with interference from industrial frequency harmonics demonstrated an average of 36 dB and 18 dB improvements in signal-to-interference ratio and signal-to-interference plus noise ratio, respectively, using multichannel recursive-least-squares algorithm. Thus, the proposed sensing system can reduce the interference effectively and allows reliable downlink signal reception.

The Fabrication of Chromium Nitride Thin-Film Type Pressure Sensors for High Pressure Application and Its Characteristics (고압용 코롬질화박막형 압력센서의 제작과 그 특성)

  • 정귀상;최성규;서정환;류지구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.470-474
    • /
    • 2001
  • This paper describes the fabrication and characteristics of CrN thin-film type pressure sensors, in which the sensing elements were deposited on SuS. 630 diaphragm by DC reactive magnetron sputtering in an argon-nitride atmosphere(Ar-(10%)N$_2$). The optimized condition of CrN thin-film sensing elements was thickness range of 3500$\AA$ and annealing condition(300$\^{C}$, 3 hr) in Ar-10%N$_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauges is obtained a high resistivity, ρ=1147.65 $\mu$Ωcm, a low temperature coefficient of resistance, TCR=186ppm/$\^{C}$ and a high temporal stability with a good longitudinal, 11.17. The output sensitivity of fabricated CrN thin-film type pressure sensors is 2.36 mV/V, 4∼20nA and the maximum non-linearity is 0.4%FS and hysteresis is less than 0.2%FS.

  • PDF

Dielectric Cure Monitoring of Thermosetting Matrix Composites (열경화성 수지 복합재료의 유전 정화 모니터링)

  • Kim, Hyoung-Geun;Lee, Dai-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.409-417
    • /
    • 2003
  • Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites.

Pixel-Structured Scintillator with Polymeric Microstructures for X-Ray Image Sensors

  • Jung, Im-Deok;Cho, Min-Kook;Bae, Kong-Myeong;Lee, Sang-Min;Jung, Phill-Gu;Kim, Ho-Kyung;Kim, Sung-Sik;Ko, Jong-Soo
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.747-749
    • /
    • 2008
  • We introduce a pixel-structured scintillator realized on a flexible polymeric substrate and demonstrate its feasibility as an X-ray converter when it is coupled to photosensitive elements. The sample was prepared by filling $Gd_2O_2S:Tb$ scintillation material into a square-pore-shape cavity array fabricated with polyethylene. For comparison, a sample with the conventional continuous geometry was also prepared. Although the pixelated geometry showed X-ray sensitivity of about 58% compared with the conventional geometry, the resolving power was improved by about 70% above a spatial frequency of 3 $mm^{-1}$. The spatial frequency at 10% of the modulation-transfer function was about 6 $mm^{-1}$.

  • PDF

Fabrication and characteristics of multilevel acoustic Fresnel lens for ultrasonic transducer for diagnostic imaging (영상진단용 초음파 트랜스듀서를 위한 멀티레벨 음향 프레넬 렌즈의 제작 및 특성)

  • Kim, Dong-Hyun;Ha, Kang-Lyeol;Kim, Moo-Joon;Kim, Jung-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • A multilevel acoustic Fresnel lens (MAFL) for the ultrasonic imaging transducer of which center frequency is approximately 5.MHz was newly designed and fabricated. The phase level of the lens was 64, and the focal length and the aperture width were 30.mm and 11.mm, respectively. The characteristics of impulse response, acoustic field and imaging performance of the transducer attached the lens were compared with the transducer attached a conventional refraction type acoustic lens (RAL). The results show that the center frequency, the loop sensitivity, and the focal depth of the MAFL transducer were higher or larger than those of the RAL transducer by approximately 0.2.MHz, 1.4.dB, and 2.mm, respectively. Consequently, it was shown that the brighter acoustic images with higher lateral resolution and the increased imaging performance for deep targets can be obtained by using the MAFL transducer.

Design and fabrication of condenser microphone with rigid backplate and vertical acoustic holes using DRIE and wafer bonding technology (기판접합기술을 이용한 두꺼운 백플레이트와 수직음향구멍을 갖는 정전용량형 마이크로폰의 설계와 제작)

  • Kwon, Hyu-Sang;Lee, Kwang-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.62-67
    • /
    • 2007
  • This paper presents a novel MEMS condenser microphone with rigid backplate to enhance acoustic characteristics. The MEMS condenser microphone consists of membrane and backplate chips which are bonded together by gold-tin (Au/Sn) eutectic solder bonding. The membrane chip has 2.5 mm${\times}$2.5 mm, $0.5{\mu}m$ thick low stress silicon nitride membrane, 2 mm${\times}$2 mm Au/Ni/Cr membrane electrode, and $3{\mu}m$ thick Au/Sn layer. The backplate chip has 2 mm${\times}$2 mm, $150{\mu}m$ thick single crystal silicon rigid backplate, 1.8 mm${\times}$1.8 mm backplate electrode, and air gap, which is fabricated by bulk micromachining and silicon deep reactive ion etching. Slots and $50-60{\mu}m$ radius circular acoustic holes to reduce air damping are also formed in the backplate chip. The fabricated microphone sensitivity is $39.8{\mu}V/Pa$ (-88 dB re. 1 V/Pa) at 1 kHz and 28 V polarization voltage. The microphone shows flat frequency response within 1 dB between 20 Hz and 5 kHz.

Modeling of Gate/Body-Tied PMOSFET Photodetector with Built-in Transfer Gate (내장된 전송게이트를 가지는 Gate/Body-Tied PMOSFET 광 검출기의 모델링)

  • Lee, Minho;Jo, Sung-Hyun;Bae, Myunghan;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.284-289
    • /
    • 2014
  • In this paper, modeling of a gate/body-tied (GBT) PMOSFET photodetector with built-in transfer gate is performed. It can control the photocurrent with a high-sensitivity. The GBT photodetector is a hybrid device consisted of a MOSFET, a lateral BJT, and a vertical BJT. This device allows for amplifying the photocurrent gain by $10^3$ due to the GBT structure. However, the operating parameters of this photodetector, including its photocurrent and transfer characteristics, were not known because modeling has not yet been performed. The sophisticated model of GBT photodetector using a process simulator is not compatible with circuit simulator. For this reason, we have performed SPICE modeling of the photodetector with reduced complexity using Cadence's Spectre program. The proposed modeling has been demonstrated by measuring fabricated chip by using 0.35 im 2-poly 4-metal standard CMOS technology.