• Title/Summary/Keyword: Sensor Position Location

검색결과 309건 처리시간 0.024초

Design of an Absolute Location and Position Measuring System for a Mobile Robot

  • Kim, Dong-Hwan;Park, Young-Chil;Hakyoung Chung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1369-1379
    • /
    • 2001
  • This paper focuses on a development of a sensor system measuring locations of a vehicle to localize a mobile robot while it tracks on the track (location sensor) . Also it focuses on a system configuration identifying the vehicle's orientation and distance from the object while it is stationary at certain station (position sensor) . As for the location sensor it consists of a set of sensors with a combined guiding and counting sensor, and an address-coded sensor to localize the vehicle while moving on the rail. For the position sensor a PSD (Position Sensitive Device) sensor with photo-switches sensor to measure the offset and orientation of the vehicle at each station is introduced. Both sensor systems are integrated with a microprocessor as a data relay to the main computer controlling the vehicle. The location sensor system is developed and its performance for a mobile robot is verified by experiments. The position measuring system is proposed and is robust to the environmental variation. Moreover, the two kinds of sensor systems guarantee a low cost application and high reliability.

  • PDF

MI센서를 이용한 3차원상 자석 위치 추정 기술 (Magnet Location Estimation Technology in 3D Using MI Sensors)

  • 조주혁;김화영
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.232-237
    • /
    • 2023
  • This paper presents a system for estimating the position of a magnet using a magnetic sensor. An algorithm is presented to analyze the waveform and output voltage values of the magnetic field generated at each position when the magnet moves and to estimate the position of the magnet based on the analyzed data. Here, the magnet is sufficiently small to be inserted into a blood vessel and has a micro-magnetic field of hundreds of nanoteslas owing to the small size and shape of the guide wire. In this study, a highly sensitive magneto-impedance (MI) sensor was used to detect these micro-magnetic fields. Nine MI sensors were arranged in a 3×3 configuration to detect a magnetic field that changes according to the position of the magnet through the MI sensor, and the voltage value output was polynomially regressed to specify a position value for each voltage value. The accuracy was confirmed by comparing the actual position value with the estimated position value by expanding it from a 1D straight line to a 3D space. Additionally, we could estimate the position of the magnet within a 3% error.

무선 센서 네트워크에서 이동성 로봇을 이용한 센서 위치 인식 기법에 관한 연구 (A Localization Scheme Using Mobile Robot in Wireless Sensor Networks)

  • 김우현
    • 한국산업융합학회 논문집
    • /
    • 제10권2호
    • /
    • pp.105-113
    • /
    • 2007
  • Accurate and low-cost sensor localization is a critical requirement for the deployment of wireless sensor networks in a wide variety of application. Sensor position is used for its data to be meaningful and for energy efficient data routing algorithm especially geographic routing. The previous works for sensor localization utilize global positioning system(GPS) or estimate unknown-location nodes position with help of some small reference nodes which know their position previously. However, the traditional localization techniques are not well suited in the senor network for the cost of sensors is too high. In this paper, we propose the sensor localization method with a mobile robot, which knows its position, moves through the sensing field along pre-scheduled path and gives position information to the unknown-location nodes through wireless channel to estimate their position. We suggest using the sensor position estimation method and an efficient mobility path model. To validate our method, we carried out a computer simulation, and observed that our technique achieved sensor localization more accurately and efficiently than the conventional one.

  • PDF

실내 대피 경로의 최신화를 위한 스마트폰 센서 기반의 사용자 위치 추정에 관한 연구 (Study of Users' Location Estimation based on Smartphone Sensors for Updating Indoor Evacuation Routes)

  • 전욱;이창호
    • 대한안전경영과학회지
    • /
    • 제20권2호
    • /
    • pp.37-44
    • /
    • 2018
  • The Location Based Service is growing rapidly nowadays due to the universalization of the use for smartphone, and therefore the location determination technology has been placed in a very important position. This study suggests an algorithm that can provide the estimate of users' location by using smartphone sensors. And in doing so we will propose a methodology for the creation and update of indoor map through the more accurate position estimation using smartphone sensors such as acceleration sensor, gyroscope sensor, geomagnetic sensor and rotation sensor.

A wireless sensor network approach to enable location awareness in ubiquitous healthcare applications

  • Singh, Vinay Kumar;Lim, Hyo-Taek;Chung, Wan-Young
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.277-285
    • /
    • 2007
  • In this paper, we outline the research issues that we are pursuing towards building of location aware environments for mainly ubiquitous healthcare applications. Such location aware application can provide what is happening in this space. To locate an object, such as patient or elderly person, the active ceiling-mounted reference beacons were placed throughout the building. Reference beacons periodically publish location information on RF and ultrasonic signals to allow application running on mobile or static nodes to study and determine their physical location. Once object-carried passive listener receives the information, it subsequently determines it's location from reference beacons. The cost of the system was reduced while the accuracy in our experiments was fairly good and fine grained between 7 and 12 cm for location awareness in indoor environments by using only the sensor nodes and wireless sensor network technology. Passive architecture used here provides the security of the user privacy while at the server the privacy was secured by providing the authentication using Geopriv approach. This information from sensor nodes is further forwarded to base station where further computation is performed to determine the current position of object.

기어 축의 기어 및 이 끝 위치 판별을 위한 유도형 센서시스템의 개발에 관한 연구 (A Study on Development of Inductive Sensor System for Locating Geared Part and Gear Position in Geared Shaft)

  • 오석규;배강열
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.223-232
    • /
    • 2014
  • An inductive sensor system is proposed to detect the gear location and angular position of a geared shaft for automatic feeding of the shaft into the proper cutting position of the other end. The system consists of two set of coils, bridge circuit, signal condition circuit, and microprocessor. The coil sensors of the system measure changes of inductance along with the surface position of a geared shaft. The inductance changes are transformed to voltages by the bridge circuit, which are then conditioned and processed for the recognition of the gear. In order to incorporate with the experimental results with the sensor system, a finite element method (FEM) simulation for the magnetic field between the sensor and the shaft was carried out. The predicted results and the experiments revealed that the sensor system was appropriate for sensing the position of gear and the angular position of gear tooth of a geared shaft.

개인 항법 시스템을 위한 센서 위치와 보폭 추정 알고리즘 (Estimation of the Sensor Location and the Step for Personal Navigation System)

  • 김태은;이호원;좌동경;홍석교
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2058-2065
    • /
    • 2010
  • This paper presents the sensor location and step estimation algorithm for personal navigation system (PNS). PNS has the disadvantage in that the position of the sensor must be fixed on a human body. Three-axis acceleration sensor is used to solve the disadvantage and to consider the real situation. We simplify the measurement data by using the band pass filter, witch It has the advantage in the detection of characteristic point. Through the detected characteristic points, it is possible to setup the parameter for the pattern detection. Depending on the sensor location, the parameters have the different type of noise covariance. Particularly, when the position of the sensor is changed, the impulse noise shows up. Considering the noise, we apply the recursive least square algorithm using the variable forgetting factors, which can classify the sensor location based on the estimated parameters. We performed the experiment for the verification of the proposed algorithm in the various environments. Through the experimental results, the effectiveness of the proposed method is verified.

USN를 이용한 컨테이너 트레일러 위치추적 시스템 (Location Tracking System for Container Trailer Using Ubiquitous Sensor Networks)

  • 박종현;추영열
    • 한국정보통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.627-633
    • /
    • 2007
  • 이 논문은 선적 및 하역 작업을 위해 겐추리 크레인으로 들어오는 컨테이너 트레일러의 위치 추적 시스템에 대하여 기술한다. 위치 추적 시스템은 트레일러가 겐추리 크레인에 접근하였을 때 트레일러의 정지 지점을 운전자에게 알려준다. 위치 측정 센서는 RF 신호와 초음파 방식을 채택한 크리켓 mote 모듈을 사용하였다. 실시간 전송을 위해 위치 측정 주기를 단축하였으며 삼각측량 방법에 따른 3 차원 위치 계산식과 환경적 요인에 의한 거리 측정 오류 감소 방법을 제시하였다. 측정된 위치는 블루투스 통신을 통해 주기적으로 운전자 앞의 PDA (Personal Digital Assistant)에 전송된다. 실내외 테스트 결과 위치 오류는 3 cm 이내로 개선되었으며 위치 측정 표시 주기는 평균 0.5초였다.

자이로센서를 이용한 파라볼릭 안테나의 위치제어시스템 설계 (Design of the Position Control System for Parabolic Antenna using Gyro Sensor)

  • 김명균;김진수;양오
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.85-91
    • /
    • 2013
  • In this paper, the parabolic antenna aims to the precise location of a moving ship or car that can be designed system using the gyro sensor. The parabolic antenna has controlled by stepping motor that is a lot of noise and slow response of speed. It has solved the problem which is noise and slow response using the BLDC motor. Also, in order to suppress the noise two-axis control and a separate encoder to the six degrees of freedom motion system was implemented in a precise location. Generally, the gyro sensor is not required to system that doesn't move the six degrees of freedom motion system. But the system will be applied to the moving such as ships or cars. Finally, we presented the position control algorithm at the sometimes controlled both gyro sensor and BLDC motor. This system was tracking that the location of the antenna to the desired angle and errors almost didn't happen when the system was moved 6 degrees of freedom.

확장성과 비용을 고려한 무선 센서 네트워크에서의 위치 추정 기법 (Scalable and Low Cost Localization Method for Wireless Sensor Networks)

  • 최재영;권욱현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.139-142
    • /
    • 2003
  • Location information of individual nodes is useful for routing and some other functions in wireless sensor networks. Each node can use GPS to know its position. However, the GPS service can not be practical to use due to cost efficiency, power, and computing capability. This paper proposes the localization method to make nodes know their location in case of a few nodes knows their position information. The proposed method is named as VALT (Virtual Anchor based Localization using Triangulation method). It uses the virtual anchor concept and calculates the location of individual nodes by means of the triangulation method. This method helps all nodes to determine their position with low cost and high scalability.

  • PDF