• Title/Summary/Keyword: Sensor Operating Systems

Search Result 239, Processing Time 0.028 seconds

UbiFOS: A Small Real-Time Operating System for Embedded Systems

  • Ahn, Hee-Joong;Cho, Moon-Haeng;Jung, Myoung-Jo;Kim, Yong-Hee;Kim, Joo-Man;Lee, Cheol-Hoon
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.259-269
    • /
    • 2007
  • The ubiquitous flexible operating system (UbiFOS) is a real-time operating system designed for cost-conscious, low-power, small to medium-sized embedded systems such as cellular phones, MP3 players, and wearable computers. It offers efficient real-time operating system services like multi-task scheduling, memory management, inter-task communication and synchronization, and timers while keeping the kernel size to just a few to tens of kilobytes. For flexibility, UbiFOS uses various task scheduling policies such as cyclic time-slice (round-robin), priority-based preemption with round-robin, priority-based preemptive, and bitmap. When there are less than 64 tasks, bitmap scheduling is the best policy. The scheduling overhead is under 9 ${\mu}s$ on the ARM926EJ processor. UbiFOS also provides the flexibility for user to select from several inter-task communication techniques according to their applications. We ported UbiFOS on the ARM9-based DVD player (20 kB), the Calm16-based MP3 player (under 7 kB), and the ATmega128-based ubiquitous sensor node (under 6 kB). Also, we adopted the dynamic power management (DPM) scheme. Comparative experimental results show that UbiFOS could save energy up to 30% using DPM.

  • PDF

Design and Implementation of Data Processing Middleware and Management System for IoT based Services

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Sensor application systems for remote monitoring and control are required, such as the establishment of databases and IoT service servers, to process data being transmitted and received through radio communication modules, controllers and gateways. This paper designs and implements database server, IoT service server, data processing middleware and IoT management system for IoT based services based on the controllers, communication modules and gateway middleware platform developed. For this, we firstly define the specification of the data packet and control code for the information classification of the sensor application system, and also design and implement the database as a separate server for data protection and efficient management. In addition, we design and implement the IoT management system so that functions such as status information verification, control and modification of operating environment information of remote sensor application systems are carried out. The implemented system can lead to efficient operation and reduced management costs of sensor application systems through site status analysis, setting operational information, and remote control and management.

A Study on a Rotor Position Sensor Offset Detection Method in a Permanent Magnet Synchronous Generator (영구자석형 동기발전기의 회전자 위치검출 센서의 옵셋 검출에 관한 연구)

  • Park, Kyusung;Shin, Sung-Hwan;Lee, Hokwang;Yoon, Youngdeuk;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.914-921
    • /
    • 2014
  • In this paper, an algorithm is suggested to detect an offset angle of the absolute rotor position sensor after the initial assembly of a PMSG. Unlike previous studies in a stationary state, this one is not designed to detect an electrical angle but rather the absolute position of the rotor is detected while operating the generator. Also,a position sensor, current sensors and voltage sensor were used to ensure reliability. This technique completes the detection of the sensor offset in two steps. In the first step, a zero-crossing of the EMF is measured using a voltage sensor to detect the electrical angle offset when the alternator is actuated by the engine. In the second step, a high frequency current is injected along the d-axis on-line during the control of the generation, eventually to obtain the inductance using a DFT (Discrete Fourier Transform), and then to ultimately extract the final electrical angle offset through the comparison of the inductance magnitude. The suggested algorithm was validated with PSIM simulation and, furthermore, was tested with actual experiments on a dynamometer.

An Implementation of Automotive Parking Assistance System using Qplus-Auto OSEK Edition

  • Son, Jeongho;Kim, Jong Hyo;Ha, Soo Young;Kwon, Kee-Koo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.103-109
    • /
    • 2013
  • Traditional implementation schemes for automotive electronic control units look simple, but the tradition schemes need so many coarse works to satisfy the user requirements regarding time constraints whenever their microprocessors are changed. Recently, a movement toward using middle-wares, such as OSEK operating system, has risen in automotive industry. In this paper, we describe how to use the features of operating systems to replace traditional firmware based softwares in points of views of services, such as multitask support, preemption, and realtime property. To show an example, we implemented a parking assistance system as a prototype.

Characteristics comparison according to operating mode of dynamically tuned gyroscope in the electro-optical tracking system (EOTS에서의 동조자이노스코프의 동작모드에 따른 특성비교)

  • Im, Sung-Woon;Ma, Jin-Suk;Kwon, Woo-Hyen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.311-317
    • /
    • 1997
  • DTG(dynamically tuned gyroscope) is a sensor detecting disturbance in angle velocity control loop of EOTS(electro optical tracking system), which is used for the stabilization of gimbal. DTG is classified into rate mode or rate integrated mode according to operating mode. In this paper, basic principles and characteristics of DTG, depending on to operating mode, are compared and the model of rate integrated mode DTG is proposed. Also, the validity of the presented model is verified by computer simulations and experiments.

  • PDF

A Tracking Algorithm for Autonomous Navigation of AGVs: Federated Information Filter

  • Kim, Yong-Shik;Hong, Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.635-640
    • /
    • 2004
  • In this paper, a tracking algorithm for autonomous navigation of automated guided vehicles (AGVs) operating in container terminals is presented. The developed navigation algorithm takes the form of a federated information filter used to detect other AGVs and avoid obstacles using fused information from multiple sensors. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. It is proved that the information state and the information matrix of the suggested filter, which are weighted in terms of an information sharing factor, are equal to those of a centralized information filter under the regular conditions. Numerical examples using Monte Carlo simulation are provided to compare the centralized information filter and the proposed one.

A Fuzzy Model Based Sensor Fault Detection Scheme for Nonlinear Dynamic Systems (퍼지모델을 이용한 비선형시스템의 센서고장 검출식별)

  • Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.407-414
    • /
    • 2007
  • A sensor fault detection scheme(SFDS) for a class of nonlinear systems that can be represented by Takagi-Sugeno fuzzy model is proposed. Basically, the SFDS may be considered as a multiple observer scheme(MOS) in which the bank of state observers and the detection & isolation logic are included. However, the proposed scheme has two great differences from the conventional MOSs. First, the proposed scheme includes fuzzy fault detection observers(FFDO) that are constructed based on the T-S fuzzy model that provides very good approximation to nonlinear dynamic systems. Secondly, unlike the conventional MOS, the FFDOS are driven not parallelly but sequentially according to the predetermined sequence to avoid the massive computational burden, which is known to be the biggest obstacle to the practical application of the multiple observer based FDI schemes. During the operating time, each FFDO generates the residuals carrying the information of a specified fault, and the corresponding fault detection logic unit performs the logical operations to detect and isolate the fault of interest. The proposed scheme is applied to an inverted pendulum control system for sensor fault detection/isolation. Simulation study shows the practical feasibility of the proposed scheme.

Development of Sensor Network Simulator for Estimating Power Consumption and Execution Time (전력소모량 및 실행시간 추정이 가능한 센서 네트워크 시뮬레이터의 개발)

  • Kim, Bang-Hyun;Kim, Tae-Kyu;Jung, Yong-Doc;Kim, Jong-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2006
  • Sensor network, that is an infrastructure of ubiquitous computing, consists of a number of sensor nodes of which hardware is very small. The network topology and routing scheme of the network should be determined according to its purpose, and its hardware and software may have to be changed as needed from time to time. Thus, the sensor network simulator being capable of verifying its behavior and estimating performance is required for better design. Sensor network simulators currently existing have been developed for specific hardwares or operating systems, so that they can only be used for such systems and do not provide any means to estimate the amount of power consumption and program execution time which are major issues for system design. In this study, we develop the sensor network simulator that can be used to design and verify various sensor networks without regarding to types of applications or operating systems, and also has the capability of predicting the amount of power consumption and program execution time. For this purpose, the simulator is developed by using machine instruction-level discrete-event simulation scheme. As a result, the simulator can be used to analyze program execution timings and related system behaviors in the actual sensor nodes in detail. Instruction traces used as workload for simulations are executable images produced by the cross-compiler for ATmega128L microcontroller.

  • PDF

ART2 Neural Network Applications for Diagnosis of Sensor Fault in the Indoor Gas Monitoring System

  • Lee, In-Soo;Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, Duk-Dong;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1727-1731
    • /
    • 2004
  • We propose an ART2 neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, fault classifier by ART2 NN (adaptive resonance theory 2 neural network) with uneven vigilance parameters is used for fault isolation. The performances of the proposed fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

  • PDF

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.