• Title/Summary/Keyword: Sensor Noise and Bias

Search Result 49, Processing Time 0.034 seconds

Study Of Millimeter-Wave Passive Imaging Sensor Using the Horn Array Antenna (혼 배열 안테나를 이용한 밀리미터파 수동 이미징 센서 연구)

  • Lim, Hyun-Jun;Chae, Yeon-Sik;Kim, Mi-Ra;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.74-79
    • /
    • 2010
  • We have designed a millimeter-wave passive imaging sensor with multi-horn antenna array. Six horn array antenna is suggested that it is integrated into one housing, and this antenna is effectively configurated m space to assemble with LNA of WR-10 structure. Antenna is designed to have the peak gain of 17.5dBi at the center frequency of 94GHz, and the return loss of less than -25dB in W-band, and the small aperture size of $6mm{\times}9mm$ for antenna configuration with high resolution. LNA is designed to have total gain of more than 55dB and noise figure of less than 5dB for good sensitivity. We made a detector for DC output translation of millimeter-wave signal with zero bias Schottky diode. It is shown that good sensitivity of more than 500mV/mW.

All-Fiber Optic Gyroscope (전광파이버형 광파이버 자이로)

  • Kim, In-Soo S.;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1840-1842
    • /
    • 1998
  • Gyroscope is a very important core sensor, as a rotation sensor in inertial space, in inertial guidance and navigation system on aeronautics, plane, vessel and so on for civilian and millitary applications. Mechnical gyroscopes, adopting a principle of spinning a top, have been used in many application system. These mechnical gyroscopes need high power consumption, long warming time and complicated peripheral devices. But fiber-optic gyroscopes, based on the Sagnac effect, have novel advantages as small volume. simple scheme, low power consumption and high reliability. So we have developed a Intermediate grade All-fiber Optic Gyroscope, which has open-loop and minimum reciprocal configuration scheme. We have designed feedback circuits for stability of amplitude and phase using four lock-in amplifier(LIA) circuits and also used for noise limitation. This paper describes the scheme of optical part and electronic part and also test results of this all-fiber optic gyroscope. The performance have been achieved as long-term bias drift of $9.54^{\circ}/h$, random walk of $0.0317^{\circ}/\sqrt{h}$ and dynamic range of ${\pm}150\;deg/s$.

  • PDF

Uncooled amorphous silicon 16x16 infrared focal plane arrays development (비정질 실리콘 기반의 비냉각형 16x16 적외선 초점면배열의 개발)

  • Cheon, Sang-Hoon;Cho, Seong-M.;Yang, Woo-Seok;Ryu, Ho-Jun;Yang, Ki-Dong;Yu, Byoung-Gon;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.301-306
    • /
    • 2009
  • This paper describes the design and fabrication of 16$\times$16 microbolometer infrared focal plane arrays based on iMEMS technology. Amorphous silicon was used for infrared-sensitive material, and it showed the resistance of 18 Mohm and the temperature coefficient of resistivity of -2.4 %. The fabricated sensors exhibited responsivity of 78 kV/W and thermal time constant of 8.0 msec at a bias voltage of 0.5 V. The array performances had satisfactory uniformity less than 5 % within one-sigma. Also, 1/f noise of pixel was measured and the noise factor of $6\times10^{-11}$ was extracted. Finally, we obtained detectivity of $1.27\times10^9cmHz^{0.5}/W$ and noise equivalent temperature difference of 200 mK at a frame rate of 30 Hz.

A Study on Implementation of Automatic Evaluation System for Static Performance of 6 DOF MEMS Inertial Sensor (6자유도 MEMS 관성센서 정적성능 자동 평가 시스템 구현에 관한 연구)

  • Ji Won Park;Hussamud Din;Byeung Leul Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.62-66
    • /
    • 2023
  • With the advancement in technology and rapid increase in the demand for microelectromechanical systems (MEMS) based inertial measurement units (IMUs), high-volume production and test system remain a major challenge for the MEMS industry. To compete with the challenging market of Industry 4.0, here we developed an automatic test system to evaluate the performance of the ovenized IMU sensors as well as analyze the data. The automatic test system was developed by interfacing a commercial MEMS IMU (BMI 088) using LabVIEW. The BMI 088 was tested experimentally for long-term bias stability, ON/OFF bias repeatability, and root mean square (rms) noise. Furthermore, the data was analyzed through the developed test system. The results show that the automatic test system has improved the test time and reduced human effort. The developed automatic test system is a significant approach to MEMS research and development (R&D) to increase and improve the mass production of IMUs.

  • PDF

Study on Error Correction of Impact Sound Position Estimation Using Ray Tracing (음선 추적을 이용한 폭발음 위치추정 오차 보정에 대한 연구)

  • Choi, Donghun;Go, Yeong-Ju;Lee, Jaehyung;Na, Taeheum;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2016
  • TDOA(time delay of arrival) position estimate from acoustic measurement of artillery shell impact is studied in order to develop a targeting evaluation system. Impact position is calculated from the intersections of hyperbolic estimates based on the least square Taylor series method. The mathematical process of Taylor series estimation is known to be robust. However, the concern lays with the accuracy because it is sensitive to the bias caused by the randomness of measurement situation. The measurement error typically occurs from the distortion of waveform, change of travelling path, and sensor position error. For outdoor measurement, a consideration should be made on the atmospheric condition such as temperature and wind which can possibly change the trajectories of rays of sound. It produces wrong propagation time events accordingly. Ray tracing and optimization techniques are introduced in this study to minimize the bias induced by the ray of sound. The numerical simulation shows that the atmospheric correction improves the estimation accuracy.

Well-Conditioned Observer Design via LMI (LMI를 이용한 Well-Conditioned 관측기 설계)

  • 허건수;정종철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.21-26
    • /
    • 2003
  • The well-conditioned observer in a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic issues such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic issues such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_2$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic issues and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

  • PDF

Attitude determination for three-axis stabilized satellite

  • Kim, Jinho;Lew, Changmo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper presents the on-board attitude determination algorithm for LEO (Low Earth Orbit) three-axis stabilized spacecraft. Two advanced star trackers and a three-axis Inertial Reference Unit (IRU) are assumed to be attitude sensors. The gyro in the IRU provides a direct measurement of the attitude rates. However, the attitude estimation error increases with time due to the gyro drift and noise. An update filter with measurements of star trackers and/or sun sensor is designed to update these gyro drift bias and to compensate the attitude error. Kalman Filter is adapted for the on-board update filter algorithm. Simulation results will be presented to investigate the attitude pointing performance.

  • PDF

CMOS Interface Circuit for MEMS Acceleration Sensor (MEMS 가속도센서를 위한 CMOS 인터페이스 회로)

  • Jeong, Jae-hwan;Kim, Ji-yong;Jang, Jeong-eun;Shin, Hee-chan;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.221-224
    • /
    • 2012
  • This paper presents a CMOS interface circuit for MEMS acceleration sensor. It consists of a capacitance to voltage converter(CVC), a second-order switched-capacitor (SC) integrator and comparator. A bandgap reference(BGR) has been designed to supply a stable bias to the circuit and a ${\Sigma}{\Delta}$ Modulator with chopper - stabilization(CHS) has also been designed for more suppression of the low frequency noise and offset. As a result, the output of this ${\Sigma}{\Delta}$ Modulator increases about 10% duty cycle when the input voltage amplitude increases 100mV and the sensitivity is x, y-axis 0.45v/g, z-axis 0.28V/g. This work is designed and implemented in a 0.35um CMOS technology with a supply voltage of 3.3V and a sampling frequency of 3MHz sampling frequency. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.

  • PDF

LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving (도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘)

  • Kim, Jongho;Lee, Hojoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.

Fabrication of a Schottky Type Ultraviolet Photodetector Using GaN Layer (GaN를 이용한 Schottky diode형 자외선 수광소자의 제작)

  • Seong, Ik-Joong;Lee, Suk-Hun;Lee, Chae-Hyang;Lee, Yong-Hyun;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.6
    • /
    • pp.28-34
    • /
    • 1999
  • We fabricated a planar ultra-violet photodetector whose ohmic and schottky contacts were respectively formed with evaporated Al and Pt on the GaN layer. To examine the applicability of the device to the UV sensor, we investigated its electrical and optical characteristics. The GaN layer on the sapphire waver had $7.8{\times}10^{16}cm^{-3}$ of doping concentnation and the $138 cm^2/V{\cdot}s$ of electron mobility and it absorbed the spectrum of the light below 325 nm wavelength. It had the responsivity of 2.8 A/W of at 325 nm, and the signal to noise ratio(SNR) of $4{\times}10^4$, and the noise equivalent power(NEP) of $3.5{\times}10^9$W under 5 V reverse bias. These results confirmed that the GaN schottky diode had a solar blind properly when it was applied to the UV photodetector.

  • PDF