• Title/Summary/Keyword: Sensor Node Deployment

Search Result 89, Processing Time 0.023 seconds

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

Sensor network key establishment mechanism depending on depending information (배치정보를 이용한 클러스터 기반 센서 네트워크 키 설정 메커니즘)

  • Doh In-Shil;Chae Ki-Joon;Kim Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.195-202
    • /
    • 2006
  • For applying sensor networking technology for our daily life, security service is essential, and pairwise key establishment is the key point for security. In this paper, we propose fairwise key establishment mechanism for secure coumunication in sensor networks. In the mechanism, we cluster the network field before deployment and predistribute key materials to normal sensor nodes and clusterheads. For clusterheads, more key materials are predistributed, and after deployment, sensor nodes which need to establish pairwise keys with other sensor nodes in different clusters make request for related key materials to their own clusterheads. Our proposal reduces the memory requirements for normal sensor nodes by distributing more information to clusterheads, and it raises the security level and resilience against node captures. In addition, it guarantees perfect pairwise key establishments for every pair of neighboring nodes and provides efficient and secure sensor communications.

On the Security of Hierarchical Wireless Sensor Networks (계층적 무선 센서 네트워크에서의 키관리 메커니즘)

  • Hamid, Md. Abdul;Hong, Choong-Seon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.23-32
    • /
    • 2007
  • We propose a group-based security scheme for hierarchical wireless sensor networks. We model the network for secure routing with 3-tier sensor network comprised of three types of nodes: Base Station, Group Dominator and ordinary Sensor Nodes. Group-based deployment is performed using Gaussian (normal) distribution and show that more than 85% network connectivity can be achieved with the proposed model. The small groups with pre-shared secrets form the secure groups where group dominators form the backbone of the entire network. The scheme is devised for dealing with sensory data aggregated by groups of collocated sensors; i.e., local sensed data are collected by the dominating nodes and sent an aggregated packet to the base station via other group dominators. The scheme is shown to be light-weight, and it offers a stronger defense against node capture attacks. Analysis and simulation results are presented to defend our proposal. Analysis shows that robustness can significantly be improved by increasing the deployment density using both the dominating and/or ordinary sensor nodes.

Integrated USN Simulator for Efficient and Extensible Deployment (효율적이고 확장성 있는 배치를 위한 통합형 USN 시뮬레이터)

  • Kim, Hyun-Woo;Kim, Jun-Ho;Song, Eun-Ha;Jeong, Young-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.698-701
    • /
    • 2012
  • IT기술의 급격한 발전을 토대로 유비쿼터스 사회로 변화함에 따라, USN(Ubiquitous Sensor Network) 기술이 매우 활성화되어있으며 연구 분야로 주목을 받고 있다. 그러나 USN 환경 구축시 효울적인지 실험을 하기위해서는 상당한 시간 및 비용이 따르게 된다. 본 논문에서는 USN 환경을 GML로 구성하고, 장애물에 대해 Map Object 여부 설정을 통해 타겟 지역 설정뿐만 아니라, MSN(Mobile Sensor Node)과 FSN(Fixed Sensor Node)에 대하여 동적 및 다양한 정적 배치가 가능한 멀티형 시뮬레이터인 IS_WSN을 제안한다.

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

  • Xiao, Xin;Zhang, Ruirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2732-2753
    • /
    • 2019
  • With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

A Study on Construction of Optimal Wireless Sensor System for Enhancing Organization Security Level on Industry Convergence Environment (산업융합환경에서 조직의 보안성 향상을 위한 센싱시스템 구축 연구)

  • Na, Onechul;Lee, Hyojik;Sung, Soyoung;Chang, Hangbae
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.139-146
    • /
    • 2015
  • WSN has been utilized in various directions from basic infrastructure of environment composition to business models including corporate inventory, production and distribution management. However, as energy organizations' private information, which should be protected safely, has been integrated with ICT such as WSN to be informatization, it is placed at potential risk of leaking out with ease. Accordingly, it is time to need secure sensor node deployment strategies for stable enterprise business. Establishment of fragmentary security enhancement strategies without considering energy organizations' security status has a great effect on energy organizations' business sustainability in the event of a security accident. However, most of the existing security level evaluation models for diagnosing energy organizations' security use technology-centered measurement methods, and there are very insufficient studies on managerial and environmental factors. Therefore, this study would like to diagnose energy organizations' security and to look into how to accordingly establish strategies for planning secure sensor node deployment strategies.

Multi-layer Surveillance System based on Wireless Mesh Networks (무선 메쉬 네트워크 기반의 다층구조 감시 시스템 구축)

  • Yoon, Tae-Ho;Song, Yoo-Seoung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.209-217
    • /
    • 2012
  • In the present, Wireless Sensor Network(WSN) has been used for the purpose of the military operation with surveillance systems and for collecting useful information from the natural environment. Basically, low-power, easy deployment and low cost are the most important factors to be deployed for WSNs. Lots of researches have been studied to meet those requirements, especially on the node capacity and battery lifetime improvements. Recently, the study of wireless mesh networks applied into the surveillance systems has been proceeded as a solution of easy deployment. In this paper, we proposed large-scale intelligent multi-layer surveillance systems based on QoS assuring Wireless Mesh Networks and implemented them in the real testbed environment. The proposed system explains functions and operations for each subsystem as well as S/W and H/W architectures. Experimental results are shown for the implemented subsystems and the performance is satisfactory for the surveillance system. We can identify the possibility of the implemented multi-layer surveillance system to be used in practice.