• Title/Summary/Keyword: Sensor Model Correction

Search Result 84, Processing Time 0.032 seconds

Absolute Atmospheric Correction Procedure for the EO-1 Hyperion Data Using MODTRAN Code

  • Kim, Sun-Hwa;Kang, Sung-Jin;Chi, Jun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2007
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral imagery. Most atmospheric correction algorithms developed for hyperspectral data have been based upon atmospheric radiative transfer (RT) codes, such as MODTRAN. Because of the difficulty in acquisition of atmospheric data at the time of image capture, the complexity of RT model, and large volume of hyperspectral data, atmospheric correction can be very difficult and time-consuming processing. In this study, we attempted to develop an efficient method for the atmospheric correction of EO-1 Hyperion data. This method uses the pre-calculated look-up-table (LUT) for fast and simple processing. The pre-calculated LUT was generated by successive running of MODTRAN model with several input parameters related to solar and sensor geometry, radiometric specification of sensor, and atmospheric condition. Atmospheric water vapour contents image was generated directly from a few absorption bands of Hyperion data themselves and used one of input parameters. This new atmospheric correction method was tested on the Hyperion data acquired on June 3, 2001 over Seoul area. Reflectance spectra of several known targets corresponded with the typical pattern of spectral reflectance on the atmospherically corrected Hyperion image, although further improvement to reduce sensor noise is necessary.

Operational Atmospheric Correction Method over Land Surfaces for GOCI Images

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.127-139
    • /
    • 2018
  • The GOCI atmospheric correction overland surfaces is essential for the time-series analysis of terrestrial environments with the very high temporal resolution. We develop an operational GOCI atmospheric correction method over land surfaces, which is rather different from the one developed for ocean surface. The GOCI atmospheric correction method basically reduces gases absorption and Rayleigh and aerosol scatterings and to derive surface reflectance from at-sensor radiance. We use the 6S radiative transfer model that requires several input parameters to calculate surface reflectance. In the sensitivity analysis, aerosol optical thickness was the most influential element among other input parameters including atmospheric model, terrain elevation, and aerosol type. To account for the highly variable nature of aerosol within the GOCI target area in northeast Asia, we generate the spatio-temporal aerosol maps using AERONET data for the aerosol correction. For a fast processing, the GOCI atmospheric correction method uses the pre-calculated look up table that directly converts at-sensor radiance to surface reflectance. The atmospheric correction method was validated by comparing with in-situ spectral measurements and MODIS reflectance products. The GOCI surface reflectance showed very similar magnitude and temporal patterns with the in-situ measurements and the MODIS reflectance. The GOCI surface reflectance was slightly higher than the in-situ measurement and MODIS reflectance by 0.01 to 0.06, which might be due to the different viewing angles. Anisotropic effect in the GOCI hourly reflectance needs to be further normalized during the following cloud-free compositing.

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

Performance and Energy Consumption Analysis of 802.11 with FEC Codes over Wireless Sensor Networks

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Kang-Woo
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2007
  • This paper expands an analytical performance model of 802.11 to accurately estimate throughput and energy demand of 802.11-based wireless sensor network (WSN) when sensor nodes employ Reed-Solomon (RS) codes, one of block forward error correction (FEC) techniques. This model evaluates these two metrics as a function of the channel bit error rate (BER) and the RS symbol size. Since the basic recovery unit of RS codes is a symbol not a bit, the symbol size affects the WSN performance even if each packet carries the same amount of FEC check bits. The larger size is more effective to recover long-lasting error bursts although it increases the computational complexity of encoding and decoding RS codes. For applying the extended model to WSNs, this paper collects traffic traces from a WSN consisting of two TIP50CM sensor nodes and measures its energy consumption for processing RS codes. Based on traces, it approximates WSN channels with Gilbert models. The computational analyses confirm that the adoption of RS codes in 802.11 significantly improves its throughput and energy efficiency of WSNs with a high BER. They also predict that the choice of an appropriate RS symbol size causes a lot of difference in throughput and power waste over short-term durations while the symbol size rarely affects the long-term average of these metrics.

Active Shape Model-based Object Tracking using Depth Sensor (깊이 센서를 이용한 능동형태모델 기반의 객체 추적 방법)

  • Jung, Hun Jo;Lee, Dong Eun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.141-150
    • /
    • 2013
  • This study proposes technology using Active Shape Model to track the object separating it by depth-sensors. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust object can be extracted. The proposed algorithm removes the horizontal component from the information of the initial depth map and separates the object using the vertical component. In addition, it is also a more efficient morphology, and labeling to perform image correction and object extraction. By applying Active Shape Model to the information of an extracted object, it can track the object more robustly. Active Shape Model has a robust feature-to-object occlusion phenomenon. In comparison to visual camera-based object tracking algorithms, the proposed technology, using the existing depth of the sensor, is more efficient and robust at object tracking. Experimental results, show that the proposed ASM-based algorithm using depth sensor can robustly track objects in real-time.

Development of the Electronic compass for Automatic Correction do Deviation (自動自差修正이 가능한 電子컴퍼스의 개발에 관한 연구)

  • Ahn, Young-Wha;Shin, Hyeong-Il;Shirai, Yasuyuki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • The Electronic compass made as a pilot model in this research is comprised of a three axis magnetic sensor, an accustar clinometer, and a fiber optic gyro sensor. The results confirming the output character, performance, and the accuracy of the deviation corrects of each sensor are as follows: 1) As for the output character of the three axis magnetic sensor, the magnetic field showed a cosine curve on the X axis, a - sine curve on the Y axis, and constant figures on the Z sensor. The horizontal component H and the vertical component V of the terrestrial magnetism calculated from the output voltage were 33.2${\mu}$T and 23.95${\mu}$T respectively. 2) When the fiber optic gyro sensor is fixed on the electromotive rotation transformation and has made a clockwise rotation with the speed of 10/sec, 20/sec, and 30/sec, the relationship between the output and the rotation angle of the fiber optic gyro sensor showed proportionally constant values. 3) When the magnetic field was induced with a magnet, the deviation before the correction was significant at a high of 25. However, the deviation after the correction using Poisson correction was in the 2 range, significantly lower than before the correction. It was confirmed that automatic deviation corrects are possible with the electronic compass made as a pilot model in this research.

Development and Performance Analysis of a Near Real-Time Sensor Model Correction System for Frame Motion Imagery (프레임동영상의 근실시간 센서모델 보정시스템 개발 및 성능분석)

  • Kwon, Hyuk Tae;Koh, Jin-Woo;Kim, Sanghee;Park, Se Hyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2018
  • Due to the increasing demand for more rapid, precise and accurate geolocation of the targets on video frames from UAVs, an efficient and timely method for correcting sensor models of motion imagery is required. In this paper, we propose a method to adjust or correct sensor models of motion imagery frames using space resection via image matching with reference data. The proposed method adopts image matching between the motion imagery frames and the reference frames which are synthesized from reference data. Ground or reference control points are generated or selected through the matching process in near real time, and are used for space resection to get adjusted sensor models. Finally, more precise and accurate geolocation of the targets can possibly be done on the fly, and we have got the promising result on performance analysis in terms of the geolocation quality.

3D Overhead Modeling Using Depth Sensor

  • Song, Eungyeol;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.83-86
    • /
    • 2014
  • Purpose This paper was purposed to suggest the method to produce the supportive helmet (head correction) for the infants who are suffering from plagiocephaly and to evaluate the level of transformation through 3D model. Method Either of CT or X-ray restored images has been used in making the supportive helmet (Head correction) in general, but these methods of measuring have problems in cost and safety. 3D surface measurement technology was suggested to solve such matters. Results It was to design the transformed model of the head within 0.7cm in average by scanning the surface of head and performing 3D restoration with marching cube and the changing rate of the head was compared in numerical data with 3D model. Conclusion The suggested methods displayed the better performance than the conventional method in respect of the speed and cost.

Study of Magnetic Sensor Harmonic Reduction to Improve Direct Driven Motors Performance Applied to Platform Screen Doors (스크린도어용 다이렉트 드라이브 모터 성능개선을 위한 자기식 센서의 고조파 저감 연구)

  • Kim, Yun-Soo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1645-1650
    • /
    • 2015
  • This paper presents the 3-dimensional electromagnetic field analysis method and correction of sensor distortion that is used by a motor speed sensor. The magnetic sensors are being expanded due to lower price than the other speed sensors such as resolver and encoder. Magnetic sensor generates sine and cosine waves when the motor rotates. However, the sine and cosine signals are distorted due to magnetic noise, which makes the angle error of the sensor, generated near by the Hall element. This paper defines an optimal design variables by using the Taguchi method to minimize output distortion of the magnetic sensor and permanent magnet. To enhance reliability of the magnetic position sensor from sensitivity error, assembly amplitude mismatch and the electrical angle, 3-Dimensional electromagnetic finite element method and correction algorithm errors were performed in due of the magnetic sensor in order to improve the quality of the initial production model.

Comparison of Lambertian Model on Multi-Channel Algorithm for Estimating Land Surface Temperature Based on Remote Sensing Imagery

  • A Sediyo Adi Nugraha;Muhammad Kamal;Sigit Heru Murti;Wirastuti Widyatmanti
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.397-418
    • /
    • 2024
  • The Land Surface Temperature (LST) is a crucial parameter in identifying drought. It is essential to identify how LST can increase its accuracy, particularly in mountainous and hill areas. Increasing the LST accuracy can be achieved by applying early data processing in the correction phase, specifically in the context of topographic correction on the Lambertian model. Empirical evidence has demonstrated that this particular stage effectively enhances the process of identifying objects, especially within areas that lack direct illumination. Therefore, this research aims to examine the application of the Lambertian model in estimating LST using the Multi-Channel Method (MCM) across various physiographic regions. Lambertian model is a method that utilizes Lambertian reflectance and specifically addresses the radiance value obtained from Sun-Canopy-Sensor(SCS) and Cosine Correction measurements. Applying topographical adjustment to the LST outcome results in a notable augmentation in the dispersion of LST values. Nevertheless, the area physiography is also significant as the plains terrain tends to have an extreme LST value of ≥ 350 K. In mountainous and hilly terrains, the LST value often falls within the range of 310-325 K. The absence of topographic correction in LST results in varying values: 22 K for the plains area, 12-21 K for hilly and mountainous terrain, and 7-9 K for both plains and mountainous terrains. Furthermore, validation results indicate that employing the Lambertian model with SCS and Cosine Correction methods yields superior outcomes compared to processing without the Lambertian model, particularly in hilly and mountainous terrain. Conversely, in plain areas, the Lambertian model's application proves suboptimal. Additionally, the relationship between physiography and LST derived using the Lambertian model shows a high average R2 value of 0.99. The lowest errors(K) and root mean square error values, approximately ±2 K and 0.54, respectively, were achieved using the Lambertian model with the SCS method. Based on the findings, this research concluded that the Lambertian model could increase LST values. These corrected values are often higher than the LST values obtained without the Lambertian model.