• Title/Summary/Keyword: Sensor MAC Protocol

Search Result 258, Processing Time 0.022 seconds

A Weather Monitoring System for Local Area Using an Energy-balanced Hybrid WSN Protocol (에너지 균등 하이브리드 WSN 프로토콜 기반 국지 기상 관측 시스템)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.193-203
    • /
    • 2014
  • This paper implements a weather monitoring system based on wireless sensor network. The wireless sensor network protocol proposed in this paper adopts a TDMA styled MAC. The protocol is designed to balance the energy consumption among sensor nodes. Other purposes of the protocol are to avoid the hidden terminal problem in 2-hop star topology, and to allow a CSMA styled communication in a given time slot to support emergent messages. Also, this paper develops the hardware of sensor node, gateway and electric generator based on solar and windy energy. The test results on the implemented system show that the time slot of each node is shifted in circular manner to balance the waiting time for transmission, and the reliability of wireless communication is over 99%.

RIX-MAC: An Energy-Efficient Receiver-Initiated Wakeup MAC Protocol for WSNs

  • Park, Inhye;Lee, Hyungkeun;Kang, Seokjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1604-1617
    • /
    • 2014
  • This paper proposes RIX-MAC (Receiver-Initiated X-MAC), a new energy-efficient MAC protocol based on an asynchronous duty cycling. RIX-MAC improves energy efficiency through utilizing short preambles and adopting the receiver-initiated approach, where RIX-MAC minimizes sender nodes' energy consumption by enabling transmitters to predict receiver nodes' wake-up times. It also reduces receiver nodes' energy consumption by decreasing the number of control frames. We use the network simulator to evaluate RIX-MAC's performance. Compared to the prior asynchronous duty cycling approaches of X-MAC and PW-MAC, the proposed protocol shows a remarkable improvement in energy-efficiency and end-to-end delay.

An Iterative Analysis of Single-Hop B-MAC Networks Under Poisson Traffic

  • Jung, Sung-Hwan;Choi, Nak-Jung;Kwon, Tae-Kyoung
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • The Berkeley-medium access control (B-MAC) is a lightweight, configurable and asynchronous duty cycle medium access control (MAC) protocol in wireless sensor networks. This article presents an analytic modelling of single-hop B-MAC protocol under a Poisson traffic assumption.Our model considers important B-MAC parameters such as the sleep cycle, the two stage backoff mechanism, and the extended preamble. The service delay of an arriving packet and the energy consumption are calculated by an iterative method. The simulation results verify that the proposed analytic model can accurately estimate the performance of single-hop B-MAC with different operating environments.

Enhanced TDMA based MAC Protocol for Adaptive Data Control in Wireless Sensor Networks

  • Alvi, Ahmad Naseem;Bouk, Safdar Hussain;Ahmed, Syed Hassan;Yaqub, Muhammad Azfar;Javaid, Nadeem;Kim, Dongkyun
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.247-255
    • /
    • 2015
  • In this paper, we propose an adaptive time division multiple access based medium access control (MAC) protocol, called bitmap-assisted shortest job first based MAC (BS-MAC), for hierarchical wireless sensor networks (WSNs). The main contribution of BS-MAC is that: (a) It uses small size time slots. (b) The number of those time slots is more than the number of member nodes. (c) Shortest job first (SJF) algorithm to schedule time slots. (d) Short node address (1 byte) to identify members nodes. First two contributions of BS-MAC handle adaptive traffic loads of all members in an efficient manner. The SJF algorithm reduces node's job completion time and to minimize the average packet delay of nodes. The short node address reduces the control overhead and makes the proposed scheme an energy efficient. The simulation results verify that the proposed BS-MAC transmits more data with less delay and energy consumption compared to the existing MAC protocols.

A MAC Protocol Considering Traffic Loads Information For a Clustered Wireless Sensor Networks (클러스터 기반의 무선 센서 네트워크 환경에서 트래픽 부하 정보를 고려한 MAC 프로토콜)

  • Kim, Seong-Cheol;Kim, Hyung-Jue
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.113-119
    • /
    • 2009
  • In this paper, we proposed an efficient TDMA scheduling algorithm for a clustered Wireless Sensor Network. Since some previous algorithms used unnecessary idle period and schedule period in each frame. It became an overhead that might consume unexpected energy and delay data transmission. To solve this problem, a dynamic scheduling algorithm according to the number of member nodes and node traffic load within a cluster was suggested. Our proposed DS-MAC(Dynamic Scheduling MAC) could save energy and reduce transmission delay Then DS-MAC was analyzed mathematically to compare with the previous algorithms.

A High Performance Transmission Method for Massively Delivering Multimedia Data in WMSN (무선 멀티미디어 센서 네트워크(WMSN) 환경에서 멀티미디어 데이터 전송을 위한 대용량 전송 기법에 대한 연구)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.903-917
    • /
    • 2012
  • For transmitting sensed data, wireless sensor networks have been developed and researched for the improvement of energy efficiency, hence, many MAC protocols in WSN employ the duty cycle mechanism. Since the progressed development of the low power transceiver and processor let the high energy efficiency come true, the delivery of the multimedia data which occurs in area of sensor work should be needed to provide supplemental information. In this paper, we design a new scheme for massive transmission of large multimedia data where the duty cycle is used in contention based MAC protocol, for WMSN. The proposed scheme can be applied into the previous duty cycle mechanism because it provides two operation between normal operation and massive transmission operation. Measuring the buffer status of sender and the condition of current radio channel can be criteria for the decision of the above two operations. This paper shows the results of the experiment by performing the simulation. The target protocol of the experiment is X-MAC which is contention based MAC protocol for WSN. And two approaches, both X-MAC which operates only duty cycle and X-MAC which operates combined massive transmission scheme, are used for the comparative experiment.

An Enhanced Cross-layer Geographic Forwarding Scheme for Wireless Sensor Networks (무선 센서 네트워크에서 향상된 교차 계층 방식의 위치기반 데이터 전달 기법)

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.712-721
    • /
    • 2012
  • In this paper, we propose an Enhanced cross-layer Geographic Forwarding (EGF) protocol for wireless sensor networks (WSNs). EGF uses an optimal back-off time to make the packet forwarding decisions using only source and destination's location information and energy cost without information about neighbor nodes' location or the number of one hop neighbor nodes. EGF is also a cross-layer protocol by combining efficient asynchronous MAC and geographic routing protocol. The proposed protocol can find optimal next hop location quickly without broadcasting node's location update and with minimizing overhead. In our performance evaluation, EGF has better performance in terms of packet success ratio, energy efficiency and end-to-end delay in wireless sensor networks.

Implementation of a TDMA-based Bidirectional Linear Wireless Sensor Network (양방향 통신을 지원하는 시분할 기반 무선 센서 네트워크의 구현)

  • Lee, Hyung-Bong;Park, Lae-Jeong;Moon, Jung-Ho;Chung, Tae-Yun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.341-351
    • /
    • 2008
  • Communication in wireless sensor networks comprising a plurality of sensor nodes located in an ad hoc environment is unidirectional in that data gathered by sensor nodes are transmitted to a sink node and not vice versa. In those networks, it is not possible for a server or a gateway to send commands to the sensor nodes to determine whether some previously received data are valid when the data indicate unusual conditions, which makes it difficult to make appropriate reactions to the unusual situations. This paper proposes and implements a TDMA-based sensor network communication protocol named BiWSLP(Bidirectional Wireless Sensor Line Protocol) supporting bidirectional communication capability. The BiWSLP is an extension of the WSLP, a unidirectional sensor network communication protocol based on the TDMA protocol. To test the feasibility of the proposed BiWSLP, we construct a virtual bridge management system capable of sending commands to sensor nodes as well as collecting data from the sensor nodes. Based on the test results of the virtual bridge management system, we show the applicability and advantages of the BiWSLP in terms of energy efficiency and bidirectional communication capability.

Research of Short Preamble MAC Protocol for Energy Efficient in Wireless Sensor Network (무선 센서 네트워크에서의 에너지 효율을 위한 짧은 프리앰블을 가지는 MAC프로토콜에 대한 연구)

  • Na, Kyeng-Heum;Lee, Sang-Bin;Ko, Doo-Hyun;An, Sun-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.204-209
    • /
    • 2010
  • Idle listening is very critical source of energy dissipation in wireless sensor networks. To reduce idle listening, we propose preamble sampling MAC that is named EESP-MAC. The main idea of EESP-MAC is to add control information into the short preamble frame. So the stream of short preambles is used not only for preamble sampling but also for avoiding overhearing, decreasing control packet overhead and reducing the listening of the redundant message, caused by message-flooding.

Comprehensive Analysis and Evaluation of Mobile S-MAC Protocol in Wireless Sensor Network

  • Alanazi, Adwan Alownie
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.358-366
    • /
    • 2022
  • Wireless sensor networks (WSN) are becoming widely used in collecting and sensing information in different fields such as in the medical area, smart phone industry and military environment. The main concern here is reducing the power consumption because it effects in the lifetime of wireless sensor during commutation because it may be work in some environment like sensor in the battlefields where is not easy to change the battery for a node and that may decrease the efficiency of that node and that may affect the network traffic may be interrupted because one or more nodes stop working. In this paper we implement, simulate, and investigate S-MAC protocol with mobility support and show the sequence of events the sender and receiver go through. We tested some parameters and their impacts of on the performance including System throughput, number of packets successfully delivered per second, packet delay, average packet delay before successful transmission.