• Title/Summary/Keyword: Sensor MAC Protocol

Search Result 258, Processing Time 0.022 seconds

A MAC Protocol Based on Adaptive Timeout for Energy Efficient Wireless Sensor Networks (에너지 효율적인 무선 센서 네트워크를 위한 적응형 Timeout 기반 MAC 프로토콜)

  • Kwon, Yong-Hun;Kong, In-Yeup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.890-893
    • /
    • 2010
  • In wireless sensor networks, each node generally uses a battery because it is hard to replace or charge. For this reason, study for life time prolongation of each node within the limited energy source has become an important issue. So many ways are suggested to minimize the energy consumption for each node, especially energy efficient MAC protocols have been studied actively. T-MAC of contention based MAC protocol is that added the adaptability on fixed duty cycle of S-MAC. T-MAC allocates the fixed timeout before each node goes to sleep mode from active mode. If no data exchanged in a timeout, each node goes to sleep mode. Because of the timeout is always fixed, the absence of data exchange in a timeout will cause unnecessary energy consumption. In this paper, in order to improve the energy efficiency, we propose a MAC protocol based on adaptive timeout that analyze the probability of the timeout, and provides the modified timeout.

  • PDF

A MAC Protocol for Underwater Acoustic Sensor Networks (수중 음파 센서 네트워크를 위한 매체접근제어 프로토콜)

  • Jang, Kil-Woong
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.337-344
    • /
    • 2008
  • Underwater acoustic sensor networks exhibit characteristics such as high propagation delay and low data rates, which are different from those of terrestrial wireless networks. Therefore, the conventional protocols used in wireless networks can be restrictive and inefficient when applied to underwater acoustic sensor networks. In this paper, we propose a medium access control protocol (MAC) to enhance the energy efficiency and throughput in underwater acoustic sensor networks. The proposed protocol employs a slot-based competition mechanism that reserves a time slot to send a data packet in advance. In the proposed protocol, collision between nodes can occur due to competition to obtain a slot. However, the proposed protocol minimizes the collisions between nodes because the nodes store the reservation information of the neighboring nodes, this reduces unnecessary energy consumption and increases throughput. We perform a simulation to evaluate the performance of the proposed protocol with regard to the energy consumption, the number of collision, channel utilization, throughput and transmission delay. We compare the proposed protocol with the conventional protocol, and the performance results show that the proposed protocol outperforms the conventional protocol.

Design of Energy Efficient MAC protocol for Wireless Sensor Networks (무선센서네트웨크를 위한 에너지 효율적인 MAC 프로토콜 설계)

  • Kang, Hyun-Joong;Lim, Hyuk-Jin;Ju, Hui-Dong;Lee, Myung-Hun;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.445-448
    • /
    • 2007
  • In this paper, we present an energy efficient MAC protocol for WSN(Wireless Sensor Networks). WSN is a self organized network to collect environmental data by small size sensor nodes which consist of wireless communication unit, MPU, sensing module etc.. In the WSN, such sensor nodes operate with limited energy and how efficient use this network has been debated recently. Therefore. we present a method to consume energy equaly by modifying existing S-MAC for efficient scheduling and data transmission.

  • PDF

Power control protocol for reduction of energy consumption in Wireless Sensor Netoworks (무선 센서 네트워크 환경에서 노드의 에너지 소비 절감을 위한 파워 제어 프로토콜)

  • Han Jung-ahn;Kim Yn-hyng;Kim Byung-gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.28-36
    • /
    • 2005
  • Wireless Sensor Networks are the technology, in which various applications such as surveillance and information gathering are possible in the uncontrollable area of human. And numerous studies are being processed for the application of ubiquitous network environment. One of major issues in sensor network is the research for prolonging the lifetime of nodes through the use of various algorithms, suggested in the mac and routing layer. In this paper, aiming at reducing energy waste, caused by redundant transmission and receipt message, we propose the mac protocol using active signal and analysis performance through simulation.

A MAC Protocol based on Hi.erarchical Virtual Clusters (계층적 가상 클러스터 기반 MAC 프로토콜)

  • Back, Doo-Sung;Pyun, Ki-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.93-102
    • /
    • 2009
  • Environmental monitoring applications measure temporature, humidity, and pollution degrees of large areas periodically and are essential for ubiquitous society. In this paper, we propose a sensor network MAC protocol that is applicable to environmental monitoring applications. The proposing MAC protocol has scalability by constructing multiple groups of sensor nodes as in SMAC protocol. Differently from SMAC protocol, however, ours have hierarchical structure between adjacent groups. Data transmission schedules are efficient since lower groups are synchronized to higher groups. Thus. the end-to-end delays and energy consumption can be reduced due to sequential transmission schedules. But since the nodes within the same group are synchronized to themselves. they have good adaptability and scalability compared to existing hierarchical approaches such as DMAC. We show by simulations that the proposing MAC protocol is superior to SMAC for environmental monitoring applications.

Energy-Efficient Quorum-Based MAC Protocol for Wireless Sensor Networks

  • Annabel, L. Sherly Puspha;Murugan, K.
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.480-490
    • /
    • 2015
  • The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum-Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum-based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake-up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.

Improvement of MAC Protocol to Reduce the Delay Latency in Real-Time Wireless Sensor Networks (실시간 무선 센서 네트워크에서 전송 지연 감소를 위한 MAC 개선 방안)

  • Jang, Ho;Jeong, Won-Suk;Lee, Ki-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.600-609
    • /
    • 2009
  • The traditional carrier sense multiple access (CSMA) protocol like IEEE 802.11 Distributed Coordination Function (DCF) does not handle the constraints adequately, leading to degraded delay latency and throughput as the network scales are enlarged. We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is like the randomized CSMA protocol, but unlike previous legacy protocols, it does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, we carefully decide to select a fixed-size contention window with non-uniform probability distribution of transmitting in each slot. We show that the proposed method can offer up to severaansimes latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely using network simulation package,caS-2. We finally show that proposed MAC scheme comes close to meet bounds on the best latency being achieved by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to delay latency.

MAC Protocol Analysis for Effective Energy Consumption in Ubiquitous Sensor network (유비쿼티스 센서 네트워크에서 효율적인 에너지 소모를 위한 MAC 프로토콜 분석)

  • Kim, Dong Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.927-930
    • /
    • 2012
  • The sensor network technology for core technology of ubiquitous computing is in the spotlight recently, the research on ubiquitous sensor network is proceeding actively which is composed many different sensor node. One of the important condition for design of sensor node is to extend for network life which is to minimize power-consumption under the limited resources of sensor network. This study suggest routing protocol that was used second level cluster structure to reduce power-consumption of sensor node. the first level use the previous routing protocol under the LEACH, second level decide to transmit or not by comparision of data value for Effective Usage, reduce the unnecessary power-consumption.

  • PDF

A Hybrid MAC Protocol for Wireless Sensor Networks Enhancing Network Performance (무선센서 네트워크에서 네트워크 성능을 향상시키는 하이브리드 MAC 프로토콜)

  • Kim, Seong-Cheol;Kim, Dong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In this paper we suggest a hybrid MAC protocol for wireless sensor networks (WSN) to enhance network performance. The proposed MAC scheme is specifically designed for wireless sensor networks which consist of lots nodes. The contributions of this paper are: First, the proposed scheduling algorithm is independent of network topology. Even though the BS node has lots of one hop node in dense mode network, all the time slots can be assigned fully without increasing frequencies. Second, BS one hop nodes can use more than one time slots if necessary, so total network performance is increased. We compare the network performance of the proposed scheme with previous one, HyMAC [1].

  • PDF

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.