• Title/Summary/Keyword: Sensor Localization

Search Result 679, Processing Time 0.02 seconds

Stochastic Error Compensation Method for RDOA Based Target Localization in Sensor Network (통계적 오차보상 기법을 이용한 센서 네트워크에서의 RDOA 측정치 기반의 표적측위)

  • Choi, Ga-Hyoung;Ra, Won-Sang;Park, Jin-Bae;Yoon, Tae-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1874-1881
    • /
    • 2010
  • A recursive linear stochastic error compensation algorithm is newly proposed for target localization in sensor network which provides range difference of arrival(RDOA) measurements. Target localization with RDOA is a well-known nonlinear estimation problem. Since it can not solve with a closed-form solution, the numerical methods sensitive to initial guess are often used before. As an alternative solution, a pseudo-linear estimation scheme has been used but the auto-correlation of measurement noise still causes unacceptable estimation errors under low SNR conditions. To overcome these problems, a stochastic error compensation method is applied for the target localization problem under the assumption that a priori stochastic information of RDOA measurement noise is available. Apart from the existing methods, the proposed linear target localization scheme can recursively compute the target position estimate which converges to true position in probability. In addition, it is remarked that the suggested algorithm has a structural reconciliation with the existing one such as linear correction least squares(LCLS) estimator. Through the computer simulations, it is demonstrated that the proposed method shows better performance than the LCLS method and guarantees fast and reliable convergence characteristic compared to the nonlinear method.

Measurement-based AP Deployment Mechanism for Fingerprint-based Indoor Location Systems

  • Li, Dong;Yan, Yan;Zhang, Baoxian;Li, Cheng;Xu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1611-1629
    • /
    • 2016
  • Recently, deploying WiFi access points (APs) for facilitating indoor localization has attracted increasing attention. However, most existing mechanisms in this aspect are typically simulation based and further they did not consider how to jointly utilize pre-existing APs in target environment and newly deployed APs for achieving high localization performance. In this paper, we propose a measurement-based AP deployment mechanism (MAPD) for placing APs in target indoor environment for assisting fingerprint based indoor localization. In the mechanism design, MAPD takes full consideration of pre-existing APs to assist the selection of good candidate positions for deploying new APs. For this purpose, we first choose a number of candidate positions with low location accuracy on a radio map calibrated using the pre-existing APs and then use over-deployment and on-site measurement to determine the actual positions for AP deployment. MAPD uses minimal mean location error and progressive greedy search for actual AP position selection. Experimental results demonstrate that MAPD can largely reduce the localization error as compared with existing work.

Localization Method in Wireless Sensor Networks using Fuzzy Modeling and Genetic Algorithm (퍼지 모델링과 유전자 알고리즘을 이용한 무선 센서 네트워크에서 위치추정)

  • Yun, Suk-Hyun;Lee, Jae-Hun;Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.530-536
    • /
    • 2008
  • Localization is one of the fundamental problems in wireless sensor networks (WSNs) that forms the basis for many location-aware applications. Localization in WSNs is to determine the position of node based on the known positions of several nodes. Most of previous localization method use triangulation or multilateration based on the angle of arrival (AOA) or distance measurements. In this paper, we propose an enhanced centroid localization method based on edge weights of adjacent nodes using fuzzy modeling and genetic algorithm when node connectivities are known. The simulation results shows that our proposed centroid method is more accurate than the simple centroid method using connectivity only.

Study on Modeling and Simulation for Fire Localization Using Bayesian Estimation (화원 위치 추정을 위한 베이시안 추정 기반의 모델링 및 시뮬레이션 연구)

  • Kim, Taewan;Kim, Soo Chan;Kim, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.424-430
    • /
    • 2021
  • Fire localization is a key mission that must be preceded for an autonomous fire suppression system. Although studies using a variety of sensors for the localization are actively being conducted, the fire localization is still unfinished due to the high cost and low performance. This paper presents the modeling and simulation of the fire localization estimation using Bayesian estimation to determine the probabilistic location of the fire. To minimize the risk of fire accidents as well as the time and cost of preparing and executing live fire tests, a 40m × 40m-virtual space is created, where two ultraviolet sensors are simulated to rotate horizontally to collect ultraviolet signals. In addition, Bayesian estimation is executed to compute the probability of the fire location by considering both sensor errors and uncertainty under fire environments. For the validation of the proposed method, sixteen fires were simulated in different locations and evaluated by calculating the difference in distance between simulated and estimated fire locations. As a result, the proposed method demonstrates reliable outputs, showing that the error distribution tendency widens as the radial distance between the sensor and the fire increases.

Extended Kalman Filter-based Localization with Kinematic Relationship of Underwater Structure Inspection Robots (수중 구조물 검사로봇의 기구학적 관계를 이용한 확장 칼만 필터 기반의 위치추정)

  • Heo, Young-Jin;Lee, Gi-Hyeon;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.372-378
    • /
    • 2013
  • In this paper, we research the localization problem of the crawler-type inspection robot for underwater structure which travels an outer wall of underwater structure. Since various factors of the underwater environment affect an encoder odometer, it is hard to localize robot itself using only on-board sensors. So in this research we used a depth sensor and an IMU to compensate odometer which has extreme error in the underwater environment through using Extended Kalman Filter(EKF) which is normally used in mobile robotics. To acquire valid measurements, we implemented precision sensor modeling after assuming specific situation that robot travels underwater structure. The depth sensor acquires a vertical position of robot and compensates one of the robot pose, and IMU is used to compensate a bearing. But horizontal position of robot can't be compensated by using only on-board sensors. So we proposed a localization algorithm which makes horizontal direction error bounded by using kinematics relationship. Also we implemented computer simulations and experiments in underwater environment to verify the algorithm performance.

Accurate Range-free Localization Based on Quantum Particle Swarm Optimization in Heterogeneous Wireless Sensor Networks

  • Wu, Wenlan;Wen, Xianbin;Xu, Haixia;Yuan, Liming;Meng, Qingxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1083-1097
    • /
    • 2018
  • This paper presents a novel range-free localization algorithm based on quantum particle swarm optimization. The proposed algorithm is capable of estimating the distance between two non-neighboring sensors for multi-hop heterogeneous wireless sensor networks where all nodes' communication ranges are different. Firstly, we construct a new cumulative distribution function of expected hop progress for sensor nodes with different transmission capability. Then, the distance between any two nodes can be computed accurately and effectively by deriving the mathematical expectation of cumulative distribution function. Finally, quantum particle swarm optimization algorithm is used to improve the positioning accuracy. Simulation results show that the proposed algorithm is superior in the localization accuracy and efficiency when used in random and uniform placement of nodes for heterogeneous wireless sensor networks.

Ground-Platform Sensor Position Optimization Based Hybrid Time Difference of Arrival Method for Airborne Emitter (Hybrid TDOA 알고리즘 기반의 Airborne Emitter 위치탐지를 위한 Ground-Platform 센서의 위치 최적화)

  • Park, Jin-Oh;Lee, Woo-Seok;You, Byung-Sek;Kook, Chan-Ho;Chung, Jae-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.886-893
    • /
    • 2010
  • This paper considers the problem of time difference-of-arrival(TDOA) source localization when the TDOA and angle of arrival(AOA) measurements from an airborne emitter source are subject to ground-platform sensor position. The optimization of sensors' position is a challenging problem and a solution with good localization accuracy has yet to be found. This paper proposes an estimator that can achieve these purposes and provides optimized sensor position for good localization accuracy using the proposed estimator. The developed algorithm and sensor position are then examined under the special case of a single airborne source. The theoretical developments are supported by simulations.

Localization Performance Improvement for Mobile Robot using Multiple Sensors in Slope Road (경사도로에서 다중 센서를 이용한 이동로봇의 위치추정 성능 개선)

  • Kim, Ji-Yong;Lee, Ji-Hong;Byun, Jae-Min;Kim, Sung-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.67-75
    • /
    • 2010
  • This paper presents localization algorithm for mobile robot in outdoor environment. Outdoor environment includes the uncertainty on the ground. Magnetic sensor or IMU(Inertial Measurement Unit) has been used to estimate robot's heading angle. Two sensor is unavailable because mobile robot is electric car affected by magnetic field. Heading angle estimation algorithm for mobile robot is implemented using gyro sensor module consisting of 1-axis gyro sensors. Localization algorithm applied Extended Kalman filter that utilized GPS and encoder, gyro sensor module. Experiment results show that proposed localization algorithm improve considerably localization performance of mobile robots.

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.

A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design (캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구)

  • Lee, Dong Myung
    • Journal of Engineering Education Research
    • /
    • v.19 no.6
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.