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Abstract 
 

Recently, deploying WiFi access points (APs) for facilitating indoor localization has attracted 
increasing attention. However, most existing mechanisms in this aspect are typically 
simulation based and further they did not consider how to jointly utilize pre-existing APs in 
target environment and newly deployed APs for achieving high localization performance. In 
this paper, we propose a measurement-based AP deployment mechanism (MAPD) for placing 
APs in target indoor environment for assisting fingerprint based indoor localization. In the 
mechanism design, MAPD takes full consideration of pre-existing APs to assist the selection 
of good candidate positions for deploying new APs. For this purpose, we first choose a number 
of candidate positions with low location accuracy on a radio map calibrated using the 
pre-existing APs and then use over-deployment and on-site measurement to determine the 
actual positions for AP deployment. MAPD uses minimal mean location error and progressive 
greedy search for actual AP position selection. Experimental results demonstrate that MAPD 
can largely reduce the localization error as compared with existing work. 
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1. Introduction 

Indoor localization has obtained considerable interests because position information is 
essential in many applications and systems such as Internet of Things [1]. In general, indoor 
localization technologies can be divided into two categories based on whether range 
information is used. One type of such technologies is range based. They measure the distance 
(range) by using radio signal strength (RSS) [2], time of arrival (TOA) [3], time difference of 
arrival (TDOA) [4], time of flight (TOF) [5], or arrival of angle (AOA) [6] and then estimate 
the position of a mobile target using triangulation, trilateration, multilateration algorithms, or 
etc. The performance of these technologies highly depends on the characteristics of wireless 
signals, which in general change with distance and time. Another type of technologies is range 
free. Such technologies estimate the position of a mobile target according to the relative 
positions between the mobile target and beacons or pre-calibrated points such as binary 
proximity [7], approximate points in triangle (APIT) [8], or pre-calibrated fingerprints [9-12]. 
In reality, the performances of most localization technologies are highly relevant to the 
number and also the positions of beacons. 

Recently, WiFi fingerprint based indoor localization has attracted a lot of attention and 
much work has been carried out by using WiFi APs as beacons due to the increasing popularity 
of existing WLAN infrastructure. However, how to properly deploy WiFi APs to achieve high 
localization performance has not received sufficient attention. Traditional WLAN facilities 
were mainly deployed for Internet access and existing work in this aspect mainly focused on 
achieving maximal signal coverage [13-14] or enhancing the network throughput [15]. Some 
existing work (e.g., [16]) indicated that the accuracy and precision of a positioning system is 
affected by the number of APs. Moreover, they suggested to carefully place APs in a way such 
that every location can receive the minimum required number of signals to achieve desired 
positioning performance goal. Some other existing mechanisms for AP deployment (e.g., 
[17-24]) used simulated based methods for fingerprint generation in order to determine the 
positions for AP deployment. They typically use a simplified radio propagation model to 
characterize the characteristics of wireless signals in target environment and also an 
abstraction for the target environment. However, the propagation properties of wireless signals 
in indoor environment are usually very complex to be characterized. Moreover, a solution 
identified by using such simulated fingerprints may be far away from the solution for the real 
environment. In addition, it is difficult, if not impossible at all, to introduce measured signals 
from pre-existing APs for radio map generation into a simulator, due to the difficulty in 
simultaneously feeding the simulator with simulated signals (from supposed newly deployed 
APs) and measured signals (from actual preexisting APs in the target environment).  

To address the above problem, in this paper, we propose a measurement-based AP 
deployment mechanism (MAPD), which works to deploy APs in target environment to 
improve the performance of a WLAN fingerprint based indoor localization system. The key 
idea behind MAPD is to take full advantage of pre-existing APs for identifying candidate AP 
positions with poor accuracy and also improved localization performance. In MAPD, two 
rounds of measurements are required. In the first round measurement, we calibrate a radio map 
by using those pre-existing APs only and then calculate the location errors of certain 
pre-selected points in the target environment. We then choose n candidate positions with the 
lowest location accuracy among the pre-selected positions. The second round measurement is 
conducted by all the pre-existing APs and overly deployed n APs, one AP at each of the above 
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selected candidate positions. We progressively select m from the n over-deployed APs, one for 
each time. During the progressive selection process, minimal mean location error and greedy 
search are used to find a near-optimal AP deployment layout. It should be noted that during the 
application phase, only the m APs are kept and those other n-m over-deployed APs will be 
removed. This is economically acceptable due to the quick decrease in WiFi AP cost. Finally, 
we conduct experiments in 320m2 office environment. The experimental results demonstrate 
that MAPD can largely improve the performance of indoor localization system in term of 
mean location error and maximum location error as compared with existing work.  

The rest of this paper is organized as follows. Section 2 gives a brief overview of related 
work for AP deployment for indoor localization. Section 3 presents the detailed design of our 
proposed mechanism MAPD. Section 4 presents some implementation details of MAPD 
regarding certain design choices and parameter tuning via experiments. Section 5 compares 
the performance of MAPD with other related work. Finally, Section 6 concludes this paper. 

2. Related Work 
Recently, deployment of WiFi APs for indoor localization has attracted much attention and a 
lot of work has been carried out in this aspect. Most existing mechanisms in this aspect (e.g., 
[17-22]) typically involve the following aspects: 1) choose a proper objective function (or 
called a key metric sometimes) to judge the quality of an AP deployment layout, 2) choose a 
search algorithm for choosing m positions out of n candidate positions (m ≤ n) for the AP 
deployment; 3) generate fingerprints (via measurement or simulation) for evaluating the 
performance of a specific deployment layout. Next, we shall introduce existing mechanism 
based on how they address each of these three aspects.  

Regarding choosing a proper objective function, most mechanisms take similarity distance 
between fingerprints or its variants as the objective function. In [17], Battiti et al. integrated 
location error minimization and signal coverage maximization as the objective function. In 
[18], Zirazi et al. presented an algorithm that minimizes geometric dilution of precision to 
improve the positioning accuracy. In [19], Sharma et al. proposed a method for minimizing the 
total number of similar fingerprints. In [20], Zhao et al. suggested to maximize the signal 
distance between each pair of fingerprints. In [21], He et al. aimed to make the resulting 
location error in Euclidean distance to be greater than a given threshold, which was chosen to 
be 2 meters. Fang et al. [22] aimed at choosing a set of APs’ locations such that the signal 
distance is maximized and the noise is minimized simultaneously. The advantages of using 
similarity distance based objective functions are easy to obtain and independent of specific 
localization algorithm. However, the correlation between similarity distance and position 
accuracy is not quite high. It means increasing the similarity distance between fingerprints 
may not necessarily contribute to the performance of a localization system. 

Regarding selection of proper search algorithm, most existing mechanisms use heuristic 
algorithms to search for a good solution. In this aspect, Refs. [17,19] use simulated annealing 
(SA), Refs. [18,21] use genetic algorithm, and Ref. [20] adopts differential evolution 
algorithm. Use of such heuristic algorithms are suitable to search near-optimal solution when 
no apriori knowledge for the combinatorial optimization problem is available. The 
performance of the solutions returned by these algorithms highly depend on the number of 
iterations allows and obtaining near-optimal solutions using such algorithms are usually quite 
time consuming. 

To generate the fingerprints for judging the quality of a specific AP deployment layout, 
most existing mechanisms use simulations to generate such fingerprints due to newly 
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deployed APs by using wireless signal propagation models. In this aspect, Refs. [17,18,20,21] 
use logarithmic loss model and Ref. [19] uses Ray tracing propagation model. However, 
indoor wireless environment is usually complex to be well characterized by a generic 
propagation model. That is, a solution identified by using such simulated fingerprints may 
largely deviate away from the ideal case in reality. Different from the above simulation based 
mechanisms, in [22], Fang et al. collected the fingerprints in a real office environment and 
used weighted k nearest neighbor algorithm to calculate the location error. However, they did 
not provide details regarding how to choose initial candidate positions for AP deployment and 
also how to choose actual AP positions from them. 

Refs. [23,24] give some general suggestions for AP deployment for assisting indoor 
localization. In [23], the experiment results demonstrated that localization performance by 
using symmetric deployment is better than that by using asymmetric deployments. In contrast, 
Ref. [24] gave a suggestion: Deploying APs at the superset of interior and perimeter access 
points in a staggered fashion could achieve better performance.  

One key problem in all the above mechanisms is that they did not consider how to jointly 
use newly deployed APs and pre-existing APs for achieving high localization performance, a 
key issue that will be studied in this paper.  

3. Proposed Mechanism 
In this section, we propose our MAPD mechanism. In the design, we assume there have 
already existed some APs (but at unknown positions) in the target environment, which is quite 
common nowadays. 

 
Fig. 1. Flow chart describing how our measurement-based AP deployment mechanism works. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016                                    1615 

The key idea behind MAPD is to make full use of the pre-existing APs via two rounds of 
on-site measurements for assisting the new AP deployment and also for achieving high 
localization performance. The first round is to calibrate the target environment using those 
pre-existing APs only and then determine some candidate positions with low position 
accuracy (whose total number is denoted by n) for the AP deployment. The second round is to 
chooses m (m<n) positions for actual AP deployment, one AP at each of the m positions, 
among the n candidate positions identified in the first round for achieving improved 
localization performance. Fig. 1 gives a flowchart showing how our mechanism works.  

Design details of MAPD are as follows.  

3.1 Determine n Candidate Positions via One Round of Measurement 
This step is to determine n candidate positions in the target environment for assisting 
the AP deployment. For this purpose, we first calibrate a radio map for the target 
environment by only using those pre-existing APs and then choose a number of n 
candidate positions among the reference points (RPs). Regarding this, we select those 
RPs with low accuracies as the candidate positions. To ease the presentation, let P 
represent the number of pre-existing APs. 
1) Calibrate a radio map using those pre-existing APs only and estimate the location 

error of each RP on this radio map 
For this purpose, we first divide the target environment into a grid structure and define the 
intersections of the grid as reference points (RPs).1 We then use a mobile phone with WiFi 
interface to scan the WiFi channels at each of the reference points and sample radio signal 
strength (RSS) T times from each detected AP. At each RP, a vector of mean RSS values 
(known as a fingerprint) associated with the RP is recorded in a two dimensional matrix 
(known as a radio map). In the matrix, each row represents a fingerprint (i.e., a RP). Let RPi 
(i∈[1, N]) represent the i-th RP and APm (m∈[1,M]) represent the m-th AP, where N and M 
represent the total number of RPs and that of APs, respectively. After obtaining the radio map, 
a mobile device at an unknown position reports its sampled vector of RSS values (denoted by 
V) sampled from various APs to a remote server. The remote server calculates the similarity 
distance between the reported vector and each fingerprint in the radio map and selects k 
fingerprints (RPs) with the smallest similarity distances as the k nearest neighbors to the 
mobile device. The positions of the k neighbors are then weighted averaged as the estimated 
position of the mobile device.  
  In this paper, the similarity distance is calculated as follows. 
 

𝑑𝑑𝑖𝑖 = �∑ (𝑜̅𝑜𝑖𝑖,𝑚𝑚 − 𝑣𝑣𝑚𝑚)2𝑀𝑀
𝑚𝑚=1 ,                            (1) 

 
where di is the similarity distance between an instantly reported RSS vector V and the 
fingerprint associated with RPi, vm represents the mean RSS value received from the m-th AP 
in vector V at RPi, and 𝑜̅𝑜𝑖𝑖,𝑚𝑚 represents the mean RSS value received from the m-th AP at the 
i-th RP. 𝑜̅𝑜𝑖𝑖,𝑚𝑚 is calculated by (2). 
 

1 Other ways of choosing references points are also acceptable. In this paper, we assume the reference points are 
distributed on a grid structure. 
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𝑜̅𝑜𝑖𝑖,𝑚𝑚 = 1
𝑇𝑇𝑖𝑖,𝑚𝑚

∑ 𝑜𝑜𝑖𝑖,𝑚𝑚(𝑥𝑥)𝑇𝑇𝑖𝑖,𝑚𝑚
𝑥𝑥=1 ,                 (2) 

 
where oi,m(x) is the x-th RSS value received from the m-th AP at the i-th RP, Ti,m is the total 
sampling time from the m-th AP at the i-th RP. In our design, the number of nearest neighbors 
k in wkNN algorithm is empirically set to 3. We had also tested other choices ranging from 1 to 
10 and found that wkNN reaches its best performance when k = 3. The estimated position(x′, y′) 
is as follows.  
 

𝑥𝑥′ = ∑ (𝑥𝑥𝑖𝑖×𝑤𝑤𝑖𝑖)𝑘𝑘
𝑖𝑖 ,𝑦𝑦′ = ∑ (𝑦𝑦𝑖𝑖×𝑤𝑤𝑖𝑖)𝑘𝑘

𝑖𝑖                               (3) 
 
where (xi,yi) is the position of the i-th nearest neighbor, and wi is the weight associated with the 
i-th nearest neighbor, which is computed as follows. 
 

𝑤𝑤𝑖𝑖 =
1
𝑑𝑑𝑖𝑖�

∑ �1 𝑑𝑑𝑗𝑗� �𝑘𝑘
𝑗𝑗=1

, (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘)    (4) 

 
Eq. (4) ensures that the nearer a neighbor is, the greater its associated weight will be.  
To determine the location error of RPi (denoted by ei) on the radio map (calibrated using 

pre-existing APs), we use the Leave-one-out cross-validation (LOOCV) method [25]. 
Specifically, we let each individual fingerprint (RP) as a testing set and all other remaining 
fingerprints as the training set. Then we substitute such two sets into (1)-(4) and apply the 
result into (5) in order to determine the location error associated with RPi (denoted by ei). 

 

              𝑒𝑒𝑖𝑖 = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ′)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′)2                 (5) 

 
where (𝑥𝑥𝑖𝑖 ′, 𝑦𝑦𝑖𝑖 ′) is the estimated position of RPi. In this way, we get the location error of each 
RP. Next, we introduce how to choose the candidate AP positions from the RPs. 

2) Select n Candidate Positions 
The selection is based on the following two observations. First, reference positions 
with poor accuracy should be chosen with high priority. Second, newly deployed APs 
should keep certain distance. The latter choice is because a newly deployed AP is 
expected to be helpful for assisting the localization in its vicinity. Detailed algorithm 
design for candidate position selection is shown in Algorithm 1. 

Algorithm 1. Selection of candidate AP positions. 

Input:    S1: An array storing the location errors of all the RPs. 
 RP_S1: An accompanying array recording the ID of the RP for each corresponding 

item in S1. 
D: Minimal required distance between newly deployed APs. 

Output:     S2: The set of candidate positions. 

float dxy: The distance between two positions x and y. 
N(x): The set of all RP neighbors of RP x within distance D. 
1. S2←∅ 
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2. Sort all the elements in S1 in the descending order of estimated location errors. 
3. while S1≠∅ 
4.    x←RP_S1[0]  //get the ID of the RP leading to the largest location error. 
5.    for each y ∈ RP_S1-{x} 
6.  do if dxy≤D, then insert y into N(x), end if 
7.    end for  
8.    insert x into S2 
9.  remove x and elements in N(x) from RP_S1 and also remove their corresponding items from 

S1 
10. end while 
11. return S2 

By properly adjusting the value of D, which represents the minimal required distance 
between newly deployed APs, Algorithm 1 can return an expected number (denoted by n) of 
candidate positions for deploying new APs. How to tune the parameter D will be discussed 
later.  

3.2 Select m Positions from the n Candidate Positions via a Second Round 
Measurement 
After completing the first round measurement, we have n candidate AP positions. Now, our 
goal is to select m out of the n candidate positions for the actual AP deployment while 
minimizing the mean location error. However, finding the optimal solution is known to be a 
combinatorial optimization problem and is NP-Complete. To find an efficient AP deployment 
layout, in MAPD, a greedy search algorithm is used. The selection process is as follows.  
 AP over-deployment is conducted to prepare radio map due to any interested AP 

combination of the n candidate positions (plus those pre-existing APs) and then judge 
the quality of the combination (measured by mean location error in this paper). The 
AP over-deployment deploys one AP at each candidate position and it is supposed to 
be economically acceptable because WiFi APs are now cheaper and cheaper. 

 Calculation of mean location error, which is for calculating the resulting mean 
location error due to an interested AP deployment layout, and 

 Progressive selection of m AP positions for actual deployment, one for each time, 
which leads to the minimal mean location error if the AP was deployed.  

  Detailed designs are as follows. 

1) Radio signal collection via AP over-deployment and on-site measurement  

To judge the quality of a particular AP deployment layout, we need the radio map calibrated by 
using APs deployed at the positions suggested by the layout. However, the total number of 
such layouts can be huge. In this paper, we handle this problem by over-deployment and 
on-site measurement. Specifically, we deploy n APs, one at each candidate position and then 
conduct another round of on-site measurement to collect the radio signals from all these n APs 
and also the P pre-existing APs at each RP. In this way, we can easily get the radio map due to 
any combination of a subset of the n APs (plus all the pre-existing APs of course). It should be 
noted that during the application phase, only m APs need to be kept and other n-m 
over-deployed APs will be removed since they are deployed only for evaluation purpose. The 
effectiveness of such over-deployment is based on the conclusion in [16]: Signals from 
different APs within the range of reception can be considered as uncorrelated or independent 
because the correlation coefficient between any pair of signals is often small or trivial. 
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2) Calculation of mean location error due to a particular AP deployment layout 

For a possible AP deployment layout, we use mean location error as the key metric to evaluate 
its performance. The procedure for calculating the mean location error (MLE) due to a specific 
AP deployment layout is given in Algorithm 2. 

Algorithm 2. Calculate the MLE of a specific AP deployment layout. 

Input:  A radio map calibrated based on a certain combination of (new) APs and also those 
pre-existing APs 

Output: MLE due to the above new AP deployment 
1. For each fingerprint (RP) in the radio map, do 
2.   Select it as the testing set and all other remaining fingerprints as the training set; 
3.   Calculate the estimated position of this fingerprint by using (3); 
4.   Calculate the location error of this fingerprint based on (5); 
5. end for 
6. Average the location errors of all fingerprints to get the MLE value and return it. 
 

To evaluate the effectiveness of using MLE as the key metric for selecting an AP 
deployment layout, we had also conducted experiments to compare it with other metrics such 
as minimal total number of similar fingerprints (MNSF) [19], maximal signal distance 
between each pair of fingerprints (MSD) [20], and maximal signal noise rate (MSNR) [22], all 
were conducted by using the same data set and in the same testing environment. The results 
show that MLE performs the best. Details will be presented in Section 3.2. 

Next, we present a greedy search algorithm (referred to as GSA) to find an AP deployment 
layout leading to low MLE. The design details are shown in Algorithm 3. An AP deployment 
layout means a number of APs chosen from the n APs and only APs in the resulting 
deployment layout will be kept during the application phase.  

In Algorithm 3, the outer “for” loop between lines 2-15 is for maximally choosing m APs 
from the n candidates and the inner “for” loop between lines 4-11 is to select one new AP from 
S2, which leads to the minimal MLE on the radio map calibrated by using all preexisting APs, 
already determined APs for deployment in S1, and one new AP from S2. The outer loop 
continues until m AP positions are selected or no qualified candidate remains (see line 12). In 
this way, we hope to greatly reduce the computational overhead with little penalty in location 
accuracy. To validate the effectiveness of GSA, we had compared GSA with simulated 
annealing (SA) and exhaustive search by using the same data set and the same objective 
function for error estimation. The details will be presented in section 3.3. 

Algorithm 3. Procedure for GSA for finding an efficient combination of APs. 

Input:    m: Expected number of APs to be deployed for use during the application phase 
                    PREV: The set of all pre-existing APs 
              S1:The set containing the new APs for actual deployment during application  

        phase, whose initial value is NIL. 
S2: A set containing the remaining over-deployed APs, which is initially all the n 

over-deployed APs. 
       Output:  S1 
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1. S1 ← ∅ 
2. for i = 1 to m, do  
3.    error ← INFINITY 
4.    for each element j ∈ S2, do 
5.    MAP ← A radio map calibrated by using APs = PREV + S1 + {j} 
6.    tmp ← The MLE of the above radio map returned by Algorithm 2 (called MAP) 
7.    if (tmp < error) then 
8.       error ← tmp 
9.       next ← j  
10.    end if 
11. end for 
12. if the resulting MLE error is lower than a given threshold, then return, end if  
13. S1←S1+{next}  
14. S2←S2-{next} 
15. end for  
16. return S1 

4. Implementation Details 
In this section, we explore the impact of various design choices and parameters in MAPD on 
its performance via extensive experiments.  

4.1 Experiment environment and setup 
The experiments were conducted on an office environment, on the third floor of the 
Science-and-Research Building on the campus of the University of Chinese Academy of 
Sciences (see Fig. 2). The target environment consists of three rooms (306, 308, and 310) and 
a corridor. The dimensions of this environment are 32 m by 10 m, an area of 320m2.  85 
reference points were selected with 1 meter space. RP1-RP32 were chosen in the corridor. 
RP33-RP49 were chosen in Room 310. RP50-RP66 were in Room 308. RP67-RP85 were 
chosen in Room 306.  
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Fig. 2. Experiment environment and distribution of the reference points. 
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In our experiments, the testing personnel walked in the target environment and sampled RSS 
values 20 times at each reference point by using a Samsung 9100 mobile phone. Throughout 
the measurement, the direction of the mobile phone was always held consistent. Among the 22 
APs detected at all the 85 RPs, 10 of them were detected at all the RPs. All these APs are 
pre-existing, whose hardware types and positions were unknown. 

 

 
Fig. 3. TL-MR10 router. 

In the experiments, we used TL-MR10U (see Fig. 3) as the new AP for deployment and 
radio map calibration. TL-MR10U is an 802.11 b/g/n router with a 2600 mAh battery, which 
can exempt the requirement of availability of power jack at each of the candidate positions.  

4.2 Impact of minimal new AP distance D 
In this subsection, we conduct experiment for tuning the parameter D, which is the minimal 
required distance between newly deployed neighbor APs in Algorithm 1. Recall that 
Algorithm 1 is to choose the n candidate positions for preparing the actual AP deployment. 

We first use the radio map calibrated by using those pre-existing APs to get a view on the 
location error at each RP. Fig. 4 shows the distribution of these location errors, where X and Y 
axes correspond to distances in meter, and Z axis represents the location error at each RP in 
meter. From Fig. 4, we can see that the location errors vary from 0.33 to 5.5 meter.  Moreoever, 
it is seen that some of the errors are significantly worse than those around them.  
 

 
Fig. 4. Distribution of the location errors at different reference points. 
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Table 1. Results returned by Algorithm 1 for different distance constraint D for new AP deployment. 

Minimal new 
AP distance D 
(meter) 

Number of 
candidate 
positions n 

Candidate positions 

2 25 67 73 20 29 57 49 45 1 77 8 13 81 26 39 70 5 66 51 17 
34 40 84 61 54 23 

3 17 67 73 20 29 57 49 45 1 77 8 13 81 39 50 66 61 41 

4 13 67 20 57 49 1 77 8 13 39 25 64 44 
 

Table 1 lists the candidate positions with changing new AP distance constraint D. In the 
first round measurement, we tested three different values (i.e., D = 2, 3, 4) for finding an 
appropriate value of D. We found that the sets of candidate AP positions based on different D 
values contain the same set of RPs (i.e., 67, 73, 20, 57, 49, 45, 1, 8, 13, 39), which are 
non-related to D. Note that when D<2 the resulting RP list still contain the above RP sequence. 
In this paper, we choose D = 3 since three meters is a reasonable distance within which RSS 
and distance exhibits a sharp relationship. Note that in this case, n=17.  

4.3 Impact of MLE 
This subsection compares the performance of using minimal mean location error MLE as the 
key metric for evaluating the performance of a specific AP deployment layout and three other 
metrics including MSD [20], MSNR [22], and MNSF [19]. MSD aims to maximize the 
Euclidean distance of received signal strength array among all the sampling points. MSNR 
aims to maximize SNR (signal-to-noise ratio). MNSF aims to minimize the total number of 
similar fingerprints.  

In this experiment, we compare the performance of the four metrics in terms of mean 
location errors resulted by different AP deployment layouts. The mean location error by using 
each of the four metrics was calculated by using the wkNN algorithm. During the experiments, 
the same data set (i.e., PreExistingAPs + NewAPs) and the same AP searching algorithm (i.e., 
simulated annealing) were used. PreExistingAPs and NewAPs represent the set of pre-existing 
APs and that of newly deployed APs, respectively. 

 
Fig. 5. Comparison of mean location error performance by different metrics versus number of 

newly deployed APs. 
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Fig. 5 shows that the location errors by all the four metrics decrease as the number of 
candidate APs increasing. Moreover, MLE is superior to all the other three. This is because 
MLE is directly related to the location accuracy of a localization system, whereas all the other 
three are not. Furthermore, the curve by MLE is smoother than those by the other three.  

4.4 Effectiveness of greedy search algorithm (GSA) 
This subsection compares the performance of GSA with two other searching algorithms 
including simulated annealing (SA) [26] and exhaustive search for finding efficient AP 
deployment layout. SA is a probabilistic search heuristic for solving the global optimization 
problem in a large search space. It uses a variable as the temperature for the cooling schedule, 
which is very high at the beginning and will become lower and lower during iterative 
computations. In our experiments, we start from a random initial combination, set the 
maximum iteration number to 300, and the starting temperature as 100. Exhaustive search 
enumerates all possible combinations and returns the optimal solution. However, its 
computational time is typically exponential to the number of candidate AP positions. 

Under the same data set (i.e., PreExistingAPs + NewAPs) and the same objective function 
(i.e., minimal MLE), we compare the performance of the above three search algorithms.  The 
performance is reflected by the mean location error calculated by using wkNN and the 
computation time. All the three search algorithms were implemented using R language on a 
PC with Intel Core i5-2400 CPU and 4 GB RAM. 

 
Fig. 6. Comparison of various search algorithms versus number of deployed APs in terms of mean 

location error. 

Fig. 6 shows that the mean location errors by all the three search algorithms decrease as the 
number of deployed APs increasing. Exhaustive search always yields the optimal solution. 
GSA is superior to SA in most cases. Specifically, the performance of SA is only relevant to the 
number of combinations and the number of iterations. In our experiments, the maximum 
iteration number of SA was fixed to 300, which is greater than the maximum number of 
possible combinations of AP positions when m ≤ 3 or m ≥ 14 (note that n=17). With the 
number of combinations increasing, the difference between SA and exhaustive search 
increases. Also, GSA has the same trend with SA. In practice, we can choose the value of n to 
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be much larger than m in order to achieve high localization performance improvement. In this 
case, GSA usually outperforms SA. 

 
Fig. 7. Comparison of searching times by different search algorithms versus number of deployed APs. 

Fig. 7 shows that all the three search algorithms’ computation times increase with the 
number of deployed APs. Among the three algorithms, GSA consumes the least time, SA is the 
second, and exhaustive search needs the largest amount of time.  

5. Performance Evaluation 
In this section, we evaluate the performance of MAPD via extensive experiments by 
comparing it with related work. 

5.1 Experiments setup 
In this subsection, we introduce in details the experiment environment, performance criteria 
used, and mechanisms performed for comparison. 

1) Experiments environment 
The experiments were again conducted in the 320m2 office environment in Fig. 2. We 
implemented the MAPD mechanism via a client program on an Android mobile phone and 
backend services on a PC. At the client side, we sampled RSS values 20 times at each 
reference point. Throughout the measurements, the mobile phone holding direction is always 
consistent. At the server side, all localization mechanisms were implemented using R 
language on a PC with Intel Core i5-2400 CPU and 4 GB RAM (as backend server). 

In the initial experiment, the number of deployed APs m was fixed to be 5. The minimal 
required distance D was set to 3, accordingly the number of candidate AP positions n = 17 (see 
Table 1). During the measurements, in total 22 preexisting APs were detected at the 85 RPs 
and 10 of them were detected at all the RPs. In the second round of measurement, in total 39 
APs were detected at the 85 RPs and 27 of them were detected at all these RPs. Note that, at 
each RP, all the 17 new APs can be detected. Accordingly, new radio map can be built by using 



1624                            Li et al.: Measurement-based AP Deployment Mechanism for Fingerprint-based Indoor Location Systems 

the 10 preexisting APs (denoted by Preexisting_APs) and the 17 candidate APs (denoted by 
nCandidateAPs). 

2) Performance criteria 
The performance of an AP deployment mechanism is measured by the gain of localization 

accuracy. In this paper, we chose to use the following three criteria. 
 Mean location error: it is reported as positioning accuracy. 
 Distribution of the location error: it represents positioning precision. 
 Maximum location error: it reflects the worst case of a localization system. 

3) Mechanisms for comparison 
We compared MAPD with the case without new APs (called NoNewAP), MSD [20], MNSF 

[19] and MSNR [22]. The main implementation details for various mechanisms are shown in 
Table 2. 

Table 2. Parameters and design choices for various mechanisms. 

Mechanisms Radio map used for 
identifying candidate 
AP  positions 

Radio map used for 
online localization 

Objective function Search 
algorithm 

NoNewAP N/A PreexistingAPs  N/A  N/A 

MSD[20] PrePreexistingAPs + 
nCandidateAPs 

PreexistingAPs + 5 new 
APs 

maximal signal 
distance of each pair 
fingerprints 

Simulated 
annealing 

MAPD PreexistingAPs + 
nCandidateAPs 

PreexistingAPs + 5 new 
APs 

minimal mean 
localization  error  

greedy search  

MNSF[19] PreexistingAPs + 
nCandidateAPs 

PreexistingAPs + 5 new 
APs 

minimal total 
number of similar 
fingerprints 

simulated 
annealing 

MSNR[22] PreexistingAPs + 
nCandidateAPs 

PreexistingAPs + 5 new 
APs 

maximal  signal 
distance and 
minimal noise  

simulated 
annealing 

According to the parameters and design choices in Table 2, the positions for the 5 new APs 
returned by different mechanisms are as follows (represented by the IDs of the corresponding 
RPs, see Fig. 2 regarding how the deployment positions are chosen by different mechanisms):  

 MAPD: 41, 39, 67, 66, 45;   
 MSD: 61, 57, 29, 8, 20; 
 MNSF: 67, 61, 39, 20, 50; 
 MSNR: 78, 8, 39, 67, 49. 

5.2 Location accuracy  
To determine the location error performance, we used wkNN onto the radio maps calibrated 

using pre-existing APs and also the 5 new APs suggested above, by using different 
mechanisms. The results are shown in Table 3 and Fig. 8. 
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Table 3. Comparison of performance of various mechanisms in terms of location errors. 

Mechanisms Mean location error 
(meter) 

Maximum location error 
(meter) 

NoNewAP 2.12 5.55 

MSD 1.73 4.53 

MAPD 1.56 4.02 

MNSF 1.69 5.20 

MSNR 1.74 4.92 

 
Table 3 shows that the mean location error by MAPD is 1.56 meter which is 0.56 meter 

(26%) 0.17 meter (10%), 0.13 meter (7%), and 0.18 meter (10%) smaller than their 
counterparts by NoNewAP, MSD, MNSF, and MSNR, respectively. Also, the maximum 
location error by MAPD is reduced by 1.53meter (27%), 0.51meter (11%), 1.18 meter (24%), 
and 0.9 meter (22.4%), as compared with the above mechanisms, respectively.  

  
Fig. 8. CDF of location error distances by different mechanisms. 

 

Fig. 8 shows the cumulative distribution function (CDF) of location errors by using 
different mechanisms. Compared with NoNewAP, the positioning precision by MAPD is 
much better. For example, in MAPD, 60 percentile of the location errors are within 2 meter, 
while only 50 percentile of location errors are within 2 meter for the case without new APs. 
Also, it is seen that MSD, MNSF and MSNR have similar performance.  Note that MAPD 
outperforms all the other mechanisms. We had also implemented our mechanism (and 
also the other mechanisms) in other indoor environment including a home 
environment (an apartment in a building) and a 15m × 15m hall in the 8th floor in a 
mall. The results also show that our mechanism outperforms existing mechanisms. 
Due to limited space, we did not report the results here. 
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5.3 Impact of AP number m  
Here, we explore the impact of the number of deployed APs m on the location accuracy 

performance. We took the pre-existing APs PreExistingAPs with the APs suggested by our 
MAPD mechanism and fed them into wkNN algorithm to calculate the resulting mean location 
error. Fig. 9 shows that the mean location error by MAPD decreases gradually with m 
increasing. After the number of APs reaches 10, however, the change in mean location error is 
insignificant. In reality, the choice on the number of deployed APs should consider the 
required accuracy and deployment cost. 

 
Fig. 9. Mean location error by MAPD versus number of deployed APs. 

In summary, from the above experimental results, it is clearly seen our MAPD mechanism 
can significantly improve the location accuracy as compared with previous work. 

6. Conclusion 
In this paper, we proposed a measurement-based AP deployment mechanism MAPD, which 
supports the deployment of new APs in indoor environment to improve the performance of a 
WLAN fingerprinting based indoor localization system. MAPD takes advantage of the 
pre-existing APs in target environment for assisting the new AP deployment. In the design of 
MAPD, two rounds of on-site measurements, over-deployment of APs for determining 
candidate locations, minimal mean location error calculation, and progressive greedy search 
are used for finding a set of near-optimal AP positions. Experimental results show that MAPD 
can achieve high localization performance. 
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