• Title/Summary/Keyword: Sensor,

Search Result 26,795, Processing Time 0.04 seconds

Current Developments of Biomedical Mobile Devices for Ubiquitous Healthcare (u-Healthcare를 위한 바이오 단말기의 개발 현황)

  • Lee, Tae-Soo;Hong, Joo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Biomedical mobile devices for ubiquitous healthcare consist of biomedical sensors and communication terminal. They have two types of configuration. One is the sensor-network type device using wired or wireless communication with intelligent sensors to acquire biomedical data. The other is the sensor embedded type device, where the data can be acquired directly by itself. There are many examples of sensor network type, such as, fall detection sensor, blood glucose sensor, and ECG sensors networked with commercial PDA phone and commercial phone terminal for ubiquitous healthcare. On the other hand, sensor embedded type mounts blood glucose sensor, accelerometer, and etc. on commercial phone. However, to enable true ubiquitous healthcare, motion sensing is essential, because users go around anywhere and their signals should be measured and monitored, when they are affected by the motion. Therefore, in this paper, two biomedical mobile devices with motion monitoring function were addressed. One is sensor-network type with motion monitoring function, which uses Zigbee communication to measure the ECG, PPG and acceleration. The other is sensor-embedded type with motion monitoring function, which also can measure the data and uses the built-in cellular phone network modem for remote connection. These devices are expected to be useful for ubiquitous healthcare in coming aged society in Korea.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Design of a MEMS sensor array for dam subsidence monitoring based on dual-sensor cooperative measurements

  • Tao, Tao;Yang, Jianfeng;Wei, Wei;Wozniak, Marcin;Scherer, Rafal;Damasevicius, Robertas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3554-3570
    • /
    • 2021
  • With the rapid development of the Chinese water project, the safety monitoring of dams is urgently needed. Many drawbacks exist in dams, such as high monitoring costs, a limited equipment service life, long-term monitoring difficulties. MEMS sensors have the advantages of low cost, high precision, easy installation, and simplicity, so they have broad application prospects in engineering measurements. This paper designs intelligent monitoring based on the collaborative measurement of dual MEMS sensors. The system first determines the endpoint coordinates of the sensor array by the coordinate transformation relationship in the monitoring system and then obtains the dam settlement according to the endpoint coordinates. Next, this paper proposes a dual-MEMS sensor collaborative measurement algorithm that builds a mathematical model of the dual-sensor measurement. The monitoring system realizes mutual compensation between sensor measurement data by calculating the motion constraint matrix between the two sensors. Compared with the single-sensor measurement, the dual-sensor measurement algorithm is more accurate and can improve the reliability of long-term monitoring data. Finally, the experimental results show that the dam subsidence monitoring system proposed in this paper fully meets the engineering monitoring accuracy needs, and the dual-sensor collaborative measurement system is more stable than the single-sensor monitoring system.

Fair Bit Allocation in Spatially Correlated Sensor Fields Using Shapley Value (공간 상관성을 갖는 센서장에서 섀플리 값을 이용한 공정한 비트 할당)

  • Sang-Seon Byun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.195-201
    • /
    • 2023
  • The degree of contribution each sensor makes towards the total information gathered by all sensors is not uniform in spatially correlated sensor fields. Considering bit allocation problem in such a spatially correlated sensor field, the number of bits to be allocated to each sensor should be proportional to the degree of contribution the sensor makes. In this paper, we deploy Shapley value, a representative solution concept in cooperative game theory, and utilize it in order to quantify the degree of contribution each sensor makes. Shapley value is a system that determines the contribution of an individual player when two or more players work in collaboration with each other. To this end, we cast the bit allocation problem into a cooperative game called bit allocation game where sensors are regarded as the players, and a payoff function is given in the criteria of mutual information. We show that the Shapley value fairly quantifies an individual sensor's contribution to the total payoff achieved by all sensors following its desirable properties. By numerical experiments, we confirm that sensor that needs more bits to cover its area has larger Shapley value in spatially correlated sensor fields.

Micro-Machined Capacitive Linear Encoder with a Mechanical Guide (마이크로 머시닝으로 제작한 기계적 가이드를 갖는 정전용량 선형 인코더)

  • Kang, Daesil;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.440-445
    • /
    • 2012
  • Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) is a novel displacement sensor which has wide measurable range with high resolution. The sensor, however, is very sensitive to relative rotational alignment between stator and mover of the sensor as well as its displacement. In addition to, there can be some disturbances in the relative rotational alignment, so some noises occur in the sensor's output signal by the disturbances. This negative effect of the high sensitivity may become larger as increasing sensitivity. Therefore, this negative effect of the high sensitivity has to be compensated and reduced to achieve nanometer resolution of the sensor. In this study, a new type capacitive linear encoder with a mechanical guide is presented to reduce the relative rotational alignment problem. The presented method is not only to reduce the alignment problem, but also to assemble the sensor to the stage conveniently. The method is based on a new type CLECDiS that has mechanical guide autonomously. In the presented sensor, when the device is fabricated by micro-machining, the guide-rail is also fabricated on the surface of the sensor. By the direct fabrication of the guide-rail with high precision micro-machining, errors of the guide-rail can be reduced significantly. In addition, a manual yaw alignment is not required to obtain large magnitude of the output signal after the assembly of the sensor and the stage. The sensor movement is going to follow the guide-rail automatically. The prototype sensor was fabricated using the presented method, and we verify the feasibility experimentally.

Development of 6-axis Ankle Force/Moment Sensor for an Intelligent Foot of a Humanoid Robot (인간형 로봇의 지능형 발을 위한 6축 발목 힘/모멘트센서)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.27-36
    • /
    • 2007
  • This paper describes the development of 6-axis ankle force/moment sensor for the intelligent feet of a humanoid robot. When the robot walks on uneven terrain, the feet should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz from the attached 6-axis force/moment sensor on their ankles. Papers have already been published have some disadvantages in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis ankle force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to get the similar rated output under each rated load. Also, the size of the sensor is very important for mounting to robot's feet. Therefore, the diameter should be below 100 mm and the height should be below 40mm. In this paper, first, the structure of a 6-axis ankle force/moment sensor was modeled for a humanoid robot's feet newly, Second, the equations to predict the strains on the sensing elements was derived, third, the size of the sensing elements was designed by using the equations, then, the sensor was fabricated by attaching straingages on the sensing elements, finally, the characteristic test of the developed sensor was carried out. The rated outputs from the derived equations agree well with the results from the experiments. The interference error of the sensor is less than 2.94%.

A Study of Sensor Fusion using Radar Sensor and Vision Sensor in Moving Object Detection (레이더 센서와 비전 센서를 활용한 다중 센서 융합 기반 움직임 검지에 관한 연구)

  • Kim, Se Jin;Byun, Ki Hun;Won, In Su;Kwon, Jang Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.140-152
    • /
    • 2017
  • This Paper is for A study of sensor fusion using Radar sensor and Vision sensor in moving object detection. Radar sensor has some problems to detect object. When the sensor moves by wind or that kind of thing, it can happen to detect wrong object like building or tress. And vision sensor is very useful for all area. And it is also used so much. but there are some weakness that is influenced easily by the light of the area, shaking of the sensor device, and weather and so on. So in this paper I want to suggest to fuse these sensor to detect object. Each sensor can fill the other's weakness, so this kind of sensor fusion makes object detection much powerful.

Design and Implementation of a Spatial Sensor Database System for the USN Environment (USN 환경을 위한 공간 센서 데이타베이스 시스템의 설계 및 구현)

  • Shin, In-Su;Liu, Lei;Kim, Joung-Joon;Chang, Tae-Soo;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.59-69
    • /
    • 2012
  • For the USN(Ubiquitous Sensor Network) environment which generally uses spatial sensor data as well as aspatial sensor data, a sensor database system to manage these sensor data is essential. In this reason, some sensor database systems such as TinyDB, Cougar are being developed by many researchers. However, since most of them do not support spatial data types and spatial operators to manage spatial sensor data, they have difficulty in processing spatial sensor data. Therefore, this paper developed a spatial sensor database system by extending TinyDB. Especially, the system supports spatial data types and spatial operators to TinyDB in order to manage spatial sensor data efficiently and provides the memory management function and the filtering function to reduce the system overload caused by sensor data streams. Lastly, we compared the processing time, accuracy, and memory usage of the spatial sensor database system with those of TinyDB and proved its superiority through the performance evaluation.

Nondestructive Evaluation and Interfacial Damage Sensing of PVDF embedded Polymer Composites using Micromechanical Techniques and Acoustic Emission (Micromechanical 시험법과 AE를 이용한 PVDF 함침 고분자 복합재료의 계면손상감지능 및 비파괴적 평가 연구)

  • Kong, Jin-Woo;Park, Joung-Man;Kim, Ki-Bok;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.216-219
    • /
    • 2002
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) have been used use as a sensor. The advantages of PVDF are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. PVDF sensor can be directly embedded and attached to a structure. In this study, PVDF sensor was embedded in single glass fiber/epoxy composites whereas PZT sensor with AE was attached to single fiber composites (SFC). Piezoelectric sensor responds to interfacial damage of SFC. The signals measured by PVDF sensor were compared to PZT sensor. PZT sensor detected the signals of fiber fracture, matrix crack, interfacial debonding and even sensor delamination, whereas PVDF sensor only detected fiber fracture signals so far, because PZT sensor is much more sensitive than current PVDF sensor. Wave voltage of fiber fracture measured by PVDF sensor was lower than that of PZT sensor, but the results of fast Fourier transform (FFT) analysis were same. Wave velocity using two PZT sensors was also studied to know the internal and surface damage effect of epoxy specimens.

  • PDF

Development of High Precision Docking Sensor for Mobile Robot (이동로봇을 위한 고정밀 도킹센서 개발)

  • Yoon, Nam-Il;Choi, Jong-Kap;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.348-354
    • /
    • 2011
  • Mobile robots performed various missions in various environments. In order to move to target precisely, the mobile robots need a precise position sensing system In this paper, a new high precision docking sensor is proposed. Proposed docking sensor consists of linear CCD(charge coupled device) sensor and ultrasonic sensors. The docking sensor system can measure lateral position(X), longitudinal position(Y) and angle(${\theta}$) between the sensor and flat target with simple mark. Two ultrasonic sensors measure two distances which can be converted to longitudinal position and angle. Linear CCD sensor measures lateral position using center mark of the target. To verify performance of the sensor, the sensor is applied to an omnidirectional mobile robot. Several experimental results show highly precise performance of the sensor. Repeatability of the docking sensor is less than 1mm and $0.2^{\circ}$. Proposed docking sensor can be applied for precise docking of mobile robot.