• 제목/요약/키워드: Sensor,

검색결과 26,795건 처리시간 0.05초

무인운반차용 16비트 가이드 센서 설계 (Design of 64-Bit Guide Sensor for Automatic Guided Vehicle)

  • 이주원;조수현;이동창;강성인
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.915-916
    • /
    • 2015
  • 무인 운반차의 주(main) 센서는 주행 경로를 검출하기 위한 가이드 센서이며, 이 센서는 8-개 또는 16-개 자기저항 소자를 10mm 간격으로 배치하여 로드(road) 검출처리를 하고 있다. 이 센서를 통하여 AGV의 자세 제어함에 있어 좌우 흔들림이 빈번하게 발생되며, 안정적인 AGV 주행을 위해서는 가이드 센서의 정밀도가 되어야 한다. 따라서 본 연구에서는 가이드 센서의 정밀도 향상을 위해 센서 신호처리 기법을 제안하고 구현하였다. 실험에서 센서의 평균정밀도가 2.84[mm]를 나타났으며, AGV 자세 제어를 위한 센서 설계에 제안된 기법이 효과적일 것이다.

  • PDF

스마트 3축 힘센서 설계 (Design of Smart Three-Axis Force Sensor)

  • 이경준;김현민;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.226-232
    • /
    • 2016
  • This paper describes the design of a smart three-axis force sensor for measuring forces Fx, Fy and Fz. The smart three-axis force sensor is composed of a three-axis force sensor, a force-measuring device, housing and a cover, where the three-axis force sensor and the force-measuring device are inside the housing and the cover. The measuring device measures forces Fx, Fy and Fz from the three-axis force sensor, and calculates the resultant force using the measured forces, and then sends the resultant force and forces to a PC or other controller using RS-485 communication. The repeatability error and the non-linearity error of the smart three-axis force sensor are less than 0.03%, and the interference error of the sensor is less than 0.87%. It is thought that the sensor can be used for measuring forces in a robot, automatic systems and so on.

로봇용 6축 힘/모멘트 센서를 위한 고성능측정기 개발 (Development of High-Precision Measuring Device for Six-axis Force/Moment Sensor)

  • 신희준;김갑순
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.46-53
    • /
    • 2007
  • This paper describes the development of a high-precision measuring device with DSP (digital signal processor) for the accurate measurement of the 6-axis force/moment sensor mounted to a humanoid robot's ankle. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, and Fz and moments Mx, My, and Mz to itself, and control the foot using the measured them. The applied forces and moments should be measured from two 6-axis force/moment sensors mounted to the feet, and the sensor is composed of Fx sensor, Fy sensor, Fz sensor, Mx sensor, My sensor and Mz sensor in a body (single block). In order to acquire output values from twelve sensors (two 6-axis force/moment sensor) accurately, the measuring device should get the function of high speed, and should be small in size. The commercialized measuring devices have the function of high speed, unfortunately, they are large in size and heavy in weight. In this paper, the high-precision measuring device for acquiring the output values from two 6-axis force/moment sensors was developed. It is composed of a DSP (150 MHz), a RAM (random access memory), amplifiers, capacities, resisters and so on. And the characteristic test was carried out.

고관절 재활로봇의 2축 힘/토크센서 설계 (Design of Two-axis Force/Torque Sensor for Hip Joint Rehabilitation Robot)

  • 김한솔;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.524-529
    • /
    • 2016
  • We describe the design and fabrication of a two-axis force/torque sensor with parallel-plate beams (PPBs) and single beams for measuring force and torque in hip-joint rehabilitation exercise using a lower rehabilitation robot. The two-axis force/torque sensor is composed of an Fz force sensor and a Tz torque sensor, which detect z direction force and z direction torque, respectively. The two-axis force/torque sensor was designed using the FEM (Finite Element Method) and manufactured using strain gages. The characteristics experiment of the two-axis force/torque sensor was carried out. The test results show that the interference error of the two-axis force/torque sensor was less than 0.64% and the repeatability error and the non-linearity of the two-axis force/torque sensor were less than 0.03%. It is thought that the developed two-axis force/torque sensor could be used for a lower rehabilitation robot.

플라스틱 광섬유 표면 입사 현상을 이용한 아크플래시 검출 광센서 (Arc-Flash Detection Sensor Based on Surface Coupling of Plastic Optical Fiber)

  • 정훈일;김명진;김영호;김영웅;노병섭
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.208-212
    • /
    • 2016
  • In this work, a loop sensor for Arc-Flash detections has been developed in order to trip a circuit breaker within 2.5 ms after an Arc-Flash event. For an efficient capturing of the flash light, plastic optical fibers, where light attenuations are larger than those in silica-based ones, with different diameters and surface conditions were utilized. The performance was comparatively analyzed with those of a point sensor and a commercialized product. The point sensor module was designed for hemisphere-like capturings of Arc-Flashes larger than 3 kA at 2 meters from the sensor. On the other hand, the loop sensor allowed 360-degree-detections around the fiber axis and the measurement range was dependent on the length of the fiber connected to the sensor module. The trip-level-dependent brightness measurement results showed that the fabricated point sensor and loop sensor satisfied a brightness condition, 10~40 klux, and the responses of the system to Arc-Flashes were completed within 2.5 ms.

인간형 로봇을 위한 6축 힘/모멘트센서 개발 (Development of 6-axis force/moment sensor for a humonoid robot)

  • 김갑순;신희준
    • 센서학회지
    • /
    • 제16권3호
    • /
    • pp.211-219
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for a humanoid robot. In order to walk on uneven terrain safely, the robot's foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself, and be controlled by the foot using the forces and moments. Also, in order to grasp unknown object safely, the robot's hand should perceive the weight of the object using the mounted 6-axis force/moment sensor to its wrist, and be controlled by the hand using the forces and moments. Therefore, 6-axis force/moment sensor should be necessary for a humanoid robot's hand and foot. In this paper, 6-axis force/moment sensor for a humanoid robot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing element of the sensor was designed using theoretical analysis. Then, 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from theoretical analysis agree well with the results from the experiments.

스마트폰 센서 기반 상황인식 시스템 연구 및 설계 (Research and Design of Smart Phone Sensor-based Context-aware System)

  • 윤태하;윤성욱;고주영;김현기
    • 한국멀티미디어학회논문지
    • /
    • 제18권3호
    • /
    • pp.408-418
    • /
    • 2015
  • This paper describes the design and implementation of situation recognition system with smart phone sensors, which recognizes the dangerous situation at anytime, anywhere through intuitive data analysis of the combination of the sensor. The implemented system consists of wearable heart rate sensor and acceleration sensor of smart phone instead of existing sensor that is attached to the body. It is also designed to get more effective results of recognition about the dangerous situation using merged displacement values of acceleration sensor and heart rate sensor which are measured in the process of recognizing dangerous situations. This research, in accordance with the wide penetration of smartphones, achieves the fast status determination through the combination of an acceleration sensor and a heart rate sensor applied to its own status perception algorithm for anyone who needs the stable perception of risk without the need for a separate provision of the sensor.

QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템 (An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection)

  • 이대석;;정완영
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

용접선 추적용 전자기센서의 제어시스템 개발 (Development of a Dual Electromagnetic Sensor-Based Weld Line Seam Tracking System)

  • 조방현;민기업;아미트;김동호;김수호;권순창
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.144-146
    • /
    • 2005
  • Dual electromagnetic sensor is used for sensing the weld line. The sensor consists of excitation and two sensing coil wound over the ferro-magnetic core. By using the dual sensor, the effect of noise is minimized. It is based on the generation of eddy currents in the welding plate by passing current through the excitation coil. The sensor can be used to track the butt joints having no gap between them, where a vision based sensor fails to track. Sensor sensitivity depends on the number of coil turns, frequency of excitation, distance of a sensor from the work piece, diameter of core, etc. The whole system consists of a sensor, a signal processing board, a motion controller and a personnel computer (PC). The raw sensor signal is processed using the signal processing board. It consists of amplification, rectification, filtering, averaging, offset adjustment, etc. Based on sensor data, the motion controller adjusts the position of a welding torch.

  • PDF

로봇의 지능형 손을 위한 3축 손가락 힘센서 개발 (Development of 3-axis finger force sensor for an intelligent robot's hand)

  • 김갑순
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.