• Title/Summary/Keyword: Sensitivity of Runoff Parameters

Search Result 65, Processing Time 0.023 seconds

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (I) - Development of Sensitivity Analysis Method - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(I) -민감도분석방법의 개발-)

  • Seo, Gyu-U;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.243-252
    • /
    • 1998
  • In this study, the new dimensionless values were defined and proposed to determine the parameters of urban runoff models based on the relative sensitivity analysis. Also, the sensitivity characteristics of each parameter were investigate. In order to analyze the parameter sensitivities of each model, total runoff ratio, peak runoff ratio, runoff sensitivity ratio, sensitivity ratio of total runoff, and sensitivity ratio of peak runoff were defined. $$Total\;runoff\;ratio(Q_{TR})\;=\;\frac{Total\;runoff\;of\;corresponding\;step}{Maximum\;total\;runoff}$$$$Peak\;runoff\;ratio(Q_{PR})\;=\;\frac{Peak\;runoff\;of\;corresponding\;step}{Maximum\;peak\;runoff}$$$$Runoff\;sensitivity\;ratio(Q_{SR})\;=\;\frac{Q_{TR}}{Q_{PR}}$$ And for estimation of sensitivity ratios based on the scale of basin area, rainfall distributions and rainfall durations in ILLUDAS & SWMM, the reasonable ranges of parameters were proposed.

  • PDF

SIMULATION OF DAILY RUNOFF AND SENSITIVITY ANALYSIS WITH SOIL AND WATER ASSESSMENT TOOL

  • Lee, Do-Hun;Kim, Nam-Won;Kim, In-Ho
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.133-146
    • /
    • 2004
  • Soil and water assessment tool (SWAT) was simulated based on the default parameters and a priori soil parameter estimation method in Bocheong watershed of Korea. The performance of the model was tested against the measured daily runoff data for 5 years between 1993 and 1997. The sensitivity analysis of SWAT model parameters was conducted to identify the most sensitive model parameters affecting the model output. The results of SWAT simulation indicate that the overall performance of SWAT in calculating daily runoff is reasonably acceptable. However, there is a problem in estimating the low flow components of streamflow since the low flow components simulated by SWAT are significantly different from the measured low flow. The sensitivity analysis with SWAT points out that soil related parameters are the most sensitive parameters affecting surface and ground water balance components and groundwater flow related parameters exhibit negligible sensitivity.

  • PDF

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (II) - Model Calibration and Application - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(II) -모형의 검정 및 적용-)

  • Seo, Gyu-U;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.253-267
    • /
    • 1998
  • In this study, ILLUDAS and SWMM were applied for Dongsucheon basin, Incheon and Test basin, Cheongju. The main parameters (II, IA, IS, SI, SR, SS) which are included in those of each model depending on runoff results were determined, and sensitivity ratios were estimated in order to evaluate and compare the characteristics of each modEL. Total runoff ratio for almost parameters turned out to have a linear relation to the rainfall durations and the scale of basin area but have nothing to do with rainfall distributions. Sensitivity ratios turned out to have a linear relation for the infiltration and soil parameters of ILLUDAS as well as all parameters of SWMM. ronoff sensitivity ratios for almost parameters were smaller than 1.0 because the impacts of total runoff were bigger than those of peak runoff. And runoff sensitivity ratio was equal to 1.0 for the roughness coefficient of SWMM. Total runoff ratio, peak runoff ratio and runoff sensitivity ratio for the selected parameters of those models were presented asthe tables and figures according to the scale of basin area, rainfall durations such as 60, 120, and 180 minutes and Huff's 4th quartiles rainfall distributions. Keywords : ILLUDAS, SWMM, parameter, sensitivity analysis, sensitivity ratio.

  • PDF

The Sensitivity Analysis of Parameters of ILLUDAS for Eastiblishment of Urban Runoff Model (도시유출모형확립을 위한 ILLUDAS모형의 매개변수 민감도분석)

  • Seo, Kyu Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.91-98
    • /
    • 1998
  • In this study, the hydrological changes due to urbanization were investigated and fundamental theory and characteristics of typical urban runoff model such as ILLUDAS was studied. Above model was applied for urbanizing Dongsucheon basin, Incheon. The main parameters (II, IA, IS) which are included in model depending on runoff results were determined, and dimensionless values such as total runoff ratio($Q_{TR}$), peak runoff ratio($Q_{PR}$), and runoff sensitivity ratio ($Q_{SR}=Q_{TR}/Q_{PR}$) were estimated in order to evaluate and compare the characteristics of model based on relative sensitivity analysis.

  • PDF

A Study on the Sensitivity Analysis of CHICAGO Model Parameters due to Watershed Area and Rainfall Characteristics (유역면적과 강우특성변화에 따른 CHICAGO모형 매개변수의 민감도분석에 관한 연구)

  • Seo, Kyu Woo;Song, Il Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.74-81
    • /
    • 1999
  • In this study, the hydrological changes due to urbanization were investigated and fundamental theory and characteristics of typical urban runoff model such as CHICAGO Model was studied. Above model was applied for urbanizing Dongsucheon basin, Incheon. The main parameters(CI, CP, CS) which are included in this model depending on runoff results were determined, and dimensionless values such as total runoff ratio($Q_{TR}$), peak runoff ratio($Q_{PR}$), and runoff sensitivity ratio($Q_{SR}=Q_{TR}/Q_{PR}$) were estimated in order to evaluate and compare the characteristics of model based on relative sensitivity analysis. Finally, applied model was proposed based on understanding of work types and established urban runoff models which can simulate well for areal development patterns and urban river basin.

  • PDF

Effects of Digital Elevation Model in Water Quality Modeling using Geogrpahic Information System

  • Cho, Sung-Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.14-19
    • /
    • 2021
  • Aim of this research was to investigate the effects of Digital Elevation Model (DEM) for sensitivity analysis with two types of DEMs: 1 to 24,000 and 1 to 250,000 DEM. Another emphasis was given to the development of methodology for processing DEMs to create ArcGIS Pro and GRASS layers. This was done while developing water quality system modeling using DEMs which were used to model hydrological processes and SWAT model. Sensitivity analysis with DEMs resulted in different runoff volumes in the model simulation. Runoff volume was higher for the 1:24,000 DEM than 1:250,000 DEM, probably due to the finer resolution and slope which increased the estimated runoff from the watershed. Certainly the DEMs were factors in precision of the simulations and it was obvious during sensitivity analysis that DEMs had significant effect on runoff volumes. We suggest, however, that additional comparative research could be conducted involving more parameters such as soil and hydrologic parameters to provide insight into the overall physical system which the SWAT model represents.

Analysis of Runoff Sensitivity for Initial Soil Condition in Distributed Model (초기토양조건에 대한 분포형모형 유출민감도 분석)

  • Park, Jin Hyeog;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.375-381
    • /
    • 2008
  • In this research, a physics based grid-multi layer distributed flood runoff model was developed to analyze discharge for the Namgang Dam Watershed ($2,293km^2$) and applied for sensitivity analysis for estimation of parameters, mainly initial soil moisture condition and saturate infiltration coefficient, which have a strong influence on discharge. Capability of the model was evaluated using VER and QER from the results of rainfall-runoff analysis and showed enhanced results of 6% compared to parameters before calibration. As the result with the sensitivity analysis of parameters, the part of the most influence on the runoff was the infiltration coefficient and ratio of layer partition. The total discharge and peak time showed comparatively precise runoff results without the initial calibration of the parameters.

Calibration and Sensitivity Analysis of LRCS Rainfall-Runoff Model(I): Theory (LRCS 강우-유출 모형의 보정 및 민감도 분석(I) : 이론)

  • O, Gyu-Chang;Lee, Gil-Seong;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.657-664
    • /
    • 1999
  • This paper introduced the basic theory of LRCS(Linear Reservoir and Channel System) rainfall runoff model proposed by Korean researchers(Lee and Lee, 1995), and discussed the change of model output according to objective functions in sensitivity analysis and calibration process of model. It proposed "hat" matrix and affluence measures for affluence analysis of parameters in calibration, and investigated relationship between change of model output according to error propagation in parameter estimation, and sensitivity of model output according to variance of model output and change of parameters. Accuracy of parameter estimates was known by analysis of sensitivity coefficient, diagonal element $h_i$ and $D_i$._i$.

  • PDF

Runoff Analysis of Urban Drainage Using DR3M-II (DR3M-II를 이용한 도시배수유역의 유출해석)

  • Min, Sang-Gi;Lee, Kil-Choon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.699-711
    • /
    • 2005
  • In this study, the U.S. Geological Survey's DR3M-II(Distributed Routing Rainfall-Runoff Model) was applied for small urban drainage. DR3M-II is a watershed model for routing storm runoff through a branched system of pipes and natural channels using rainfall input. The model was calibrated and verified using short term rainfall-runoff data collected from Sanbon basin. Also, the parameters were optimized using Rosenbrock technic. An estimated simulation error for peak discharge was about 7.4 percent and the result was quite acceptable. Results of the sensitivity analysis indicate that the percent of effective impervious area and ${\alpha}$ defining surface slope and roughness were the most sensitive variables affecting runoff volumes and peak discharge for low and high intensity storm respectively. In most cases, soil moisture accounting and infiltration parameters are the variables that give more effects to runoff volumes than peak discharge. Parameter ${\alpha}$ showed the opposite result.

Establishment of Rainfall and Contaminants Runoff Modeling System for the Joman River Watershed Using SWMM (SWMM을 이용한 조만강 유역 강우-오염물 유출모델링시스템 구축)

  • Lee, Yong-Chin;Yoon, Young-Sam;Lee, Nam-Joo
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.983-992
    • /
    • 2009
  • The purpose of the present study is to analyze pollutant runoff characteristics from non-point sources in Joman River basin. The present study contains analyzed results of rainfall and SS, BOD, COD, TN, TP runoff from Joman River basin. This study contains a sensitivity analysis of parameters that affect the simulation results of rainfall and pollutants runoff. Result of the sensitivity analysis shows that proportion of watershed and impervious areas is the most sensitive to peak discharge and total flowrate for rainfall runoff and that WASHPO is the most sensitive parameter for pollutants runoff. For parameter estimation and verification, flowrate and water quality is measured at the Kangdong Bridge in Haeban stream. A single rainfall event is use to perform parameter estimation and verification. Results of the present study show that total pollutant loads of Joman River basin is 11,600 ton of SS, 452 ton of BOD, 1,084 ton of COD, 515 ton of TN, and 49 ton of TP, respectively. In addition, it is found that contribution ratio of non point source and total source is 89% of SS, 63% of BOD, 61% of COD, 21% of TN, and 32% of TP, respectively.