• Title/Summary/Keyword: Sensitivity of Low Temperature

Search Result 358, Processing Time 0.037 seconds

New Compensation Method for Temperature Sensitivity of Fiber Brags Grating Using Bi-metal

  • Chung, Young-Joo;Song, Jong-Seob;Han, Won-Taek;Paek, Un-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.84-88
    • /
    • 2003
  • A new method for temperature compensation of fiber Bragg grating (FBG) using hi-metal is proposed and experimentally demonstrated. Bi-metal bends toward the metal of low temperature expansion coefficient as the temperature increases, and this property is utilized to cancel the thermo-optic effect of the fiber. The optimum thickness of the high coefficient metal was empirically found by the trial-and-error method. The temperature sensitivities were 8.1 pm/$^{\circ}C$ and -0.018 pm/$^{\circ}C$ for the uncompensated and compensated FBGs, respectively, which indicates a reduction to a mere 0.22 % of the original sensitivity. No appreciable change in the spectral shape was observed. The packaging technique described in this paper is simple and compact, and it can be used for FBGs in WDM and DWDM communication systems that have stringent requirements on the temperature stability of the components.

Development of the High Temperature Silicon Pressure Sensor (고온용 실리콘 압력센서 개발)

  • Kim, Mi-Mook;Nam, Tae-Chul;Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.175-181
    • /
    • 2004
  • A pressure sensor for high temperature was fabricated by using a SDB(Silicon-Direct-Bonding) wafer with a Si/$SiO_{2}$/ Si structure. High pressure sensitivity was shown from the sensor using a single crystal silicon of the first layer as a piezoresistive layer. It also was made feasible to use under the high temperature as of over $120^{\circ}C$, which is generally known as the critical temperature for the general silicon sensor, by isolating the piezoresistive layer dielectrically and thermally from the silicon substrate with a silicon dioxide layer of the second layer. The pressure sensor fabricated in this research showed very high sensitivity as of $183.6{\mu}V/V{\cdot}kPa$, and its characteristics also showed an excellent linearity with low hysteresis. This sensor was usable up to the high temperature range of $300^{\circ}C$.

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

Characteristic Property of Combustion and Internal Ballistics of Triple-Based Propellant including RDX (RDX를 적용한 다기추진제의 연소 및 강내탄도 특성)

  • Son, Soojung;Lee, Wonmin;Lee, Woojin;Kwon, Soonkil;Jung, Jinyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.321-328
    • /
    • 2022
  • The current development tend of the gun propellants that they should have low sensitivity and high energy. We studied a nitrocellulose based propellant composition that replaced sensitive NG with RDX and DEGDN which high energy and low sensitivity. The important factors in the design of the gun propellant were impetus and flame temperature. NC-based propellant containing RDX showed similar impetus but low flame temperature compared to KM30A1, a triple-based propellant. The developed propellant composition didn't show any abnormal combustion reaction and the characteristics of ballistic resistance were also confirmed.

Development and Evaluation of Non-Hydrous Skin Analogue Liquid Crystal using Thermo-Sensitivity Smart Sensor

  • Yoo, Kwang-Ho;Hong, Jae-Hwa;Eun, So-Hee;Jeong, Tae-Hwa;Jeong, Kwan-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.367-374
    • /
    • 2014
  • In this study, skin permeation enhancement was confirmed by designing it to have a structure and composition similarity to the intercellular lipids that improve miscibility with skin by cross-linked lipids poloxamer. The cross-linked lipids poloxamer was synthesized and analyzed by 1H NMR that structure dose had conjugated pluronic with ceramide3. Active component is released by modification of liquid crystal structure because PPO part, large-scale molecule block of pluronic, has hydrophobic nature at skin temperature of $35^{\circ}C$. Conjugated pluronic with ceramide3 was synthesized using Pluronic F127 and p-NPC (4-nitrophenyl chloroformate) at room temperature yielded 89%. Pluronic(Ceramide 3-conjugated Pluronic) was synthesized by reaction of p-NP-Pluronic with Ceramide3 and DMAP. The yield was 51%. This cross-linked lipids poloxamer was blended and dissolved at isotropic state with skin surface lipids, phospholipid, ceramide, cholesterol and anhydrous additive solvent. Next step was preceded by ${\alpha}$-Transition at low temperature for making the structure of Meso-Phase Lamella, and non-hydrous skin analogue liquid crystal using thermo-sensitivity smart sensor, lamellar liquid crystal structure through aging time. For confirmation of conjugation thermo-sensitivity smart sensor and non-hydrous skin analogue liquid crystal, structural observation and stability test were performed using XRD(Xray Diffraction), DSC(Differential Scanning Calorimetry), PM (Polarized Microscope) And C-SEM (Cryo-Scanning Electron Microscope). Thermo-sensitivity observation by Franz cell revealed that synthesized smart sensor shown skin permeation effect over 75% than normal liquid crystal. Furthermore, normal non-hydrous skin analogue liquid crystal that not applied smart sensor shown similar results below $35^{\circ}C$ of skin temperature, but its effects has increased more than 30% above $35^{\circ}C$.

A study on improving sensitivity to CO2 gases of Na solid electrolyte sensors adding CaO (CaO를 첨가한 Na고체전해질 센서의 CO2가스 감도향상에 관한 연구)

  • Kwak, Jong-Sig;Seo, Moo-Gyo;Choi, Soon-Don;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.218-223
    • /
    • 2002
  • NASICON sensors that the NASICON electrolytes with various CaO amounts were sintered at low temperature($900^{\circ}C$), were fabricated to improve $CO_2$ sensitivity and stability in sensing behaviors. The manufactured device was shown good sensing characteristics and stability of output electromotive force at $250^{\circ}C$, comparatively low operating temperature.

The Fabrication of a Micromachined Ceramic Thin-Film Pressure Sensor with High Overpressure Tolerance (과부하 방지용 마이크로머시닝 세라믹 박막형 압력센서의 제작)

  • Lim, Byoung-Kwon;Choi, Sung-Kyu;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.731-734
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Ta-N thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability. The sensitivity is $1.097{\sim}1.21mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Methane sensing characteristics and power consumption of MEMS gas sensor based on ZnO nanowhiskers (ZnO 나노휘스커 소재를 이용한 MEMS가스센서의 소비전력과 메탄 감응 특성 연구)

  • Moon, Hyung-Shin;Park, Sung-Hyun;Kim, Sung-Eun;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.462-468
    • /
    • 2010
  • A low power gas sensor with microheater was fabricated by MEMS technology. In order to heat up the gas sensing material to a operating temperature, a platinum(Pt) micro heater was built on to the micromachined Si substrate. The width and gap of microheater were $20\;{\mu}m$ and $4.5\;{\mu}m$, respectively. ZnO nanowhisker arrays were fabricated on a sensor device by hydrothermal method. The sensor device was deposited with ZnO seeds using PLD systems. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growthing ZnO nanowhiskers. The power consumption to heat up the gas sensor to a operating temperature was measured and temperature distribution of sensor was analyzed by a Infrared Thermal Camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high(64 %) sensitivity was obtained even at as low as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$ and was only 25 mW at $150^{\circ}C$.

Uncertainty evaluation in electrochemical noise resistance measurement (전기화학적 노이즈 저항 측정에서의 불확도 평가)

  • Kim, Jong Jip;Kang, Su Yeon
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.220-226
    • /
    • 2013
  • The uncertainty in statistical noise resistance measurement was evaluated for a type 316 stainless steel in NaCl solutions at room temperature. Sensitivity coefficients were determined for measurands or variables such as NaCl concentration, pH, solution temperature, surface roughness, inert gas flow rate and bias potential amplitude. The coefficients were larger for the variables such as NaCl concentration, pH, inert gas flow rate and solution temperature, and they were the major factors increasing the combined standard uncertainty of noise resistance. However, the contribution to the uncertainty in noise resistance measurement from the above variables was remarkably low compared to that from repeated measurements of noise resistance, and thus, it is difficult to lower the uncertainty in noise resistance measurement significantly by lowering the uncertainties related with NaCl concentration, pH, inert gas flow rate and solution temperature. In addition, the uncertainty in noise resistance measurement was high amounting to 17.3 % of the mean, indicating that the reliability in measurement of noise resistance is low.