• 제목/요약/키워드: Sensitivity analyses

Search Result 847, Processing Time 0.028 seconds

An Efficient Dynamic Response Optimization Using the Design Sensitivities Approximated Within the Estimate Confidence Radius

  • Park, Dong-Hoon;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1143-1155
    • /
    • 2001
  • In order to reduce the expensive CPU time for design sensitivity analysis in dynamic response optimization, this study introduces the design sensitivities approximated within estimated confidence radius in dynamic response optimization with ALM method. The confidence radius is estimated by the linear approximation with Hessian of quasi-Newton formula and qualifies the approximate gradient to be validly used during optimization process. In this study, if the design changes between consecutive iterations are within the estimated confidence radius, then the approximate gradients are accepted. Otherwise, the exact gradients are used such as analytical or finite differenced gradients. This hybrid design sensitivity analysis method is embedded in an in-house ALM based dynamic response optimizer, which solves three typical dynamic response optimization problems and one practical design problem for a tracked vehicle suspension system. The optimization results are compared with those of the conventional method that uses only exact gradients throughout optimization process. These comparisons show that the hybrid method is more efficient than the conventional method. Especially, in the tracked vehicle suspension system design, the proposed method yields 14 percent reduction of the total CPU time and the number of analyses than the conventional method, while giving similar optimum values.

  • PDF

Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model (반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계)

  • Park, Chan-Gyeong;Lee, Gwang-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

A Mathematical Model Proposed for the Prediction of the Fate of Priority Organic Pollutants Spilled in Streams: Dynamic Simulations and Sensitivity Analysis (하천에 유입된 유독성 유기오염물의 농도분포를 예측하기 위한 수학적 모형의 개발: Dynamic simulations 및 민감도 분석)

  • Ko, Kwang Baik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.265-274
    • /
    • 1992
  • A mathematical model was proposed to predict the fate of a priority organic pollutant, anthracene, accidently spilled into a stream. The model consists of 6 differential equations with 5 input variables and 9 rate constants. Volatilization, biodegradation, adsorption/desorption, photodegradation as well as the convective inputs and outputs are included in the model. As a result of a series of dynamic simulations and sensitivity analyses under the given conditions, the concentrations of the organic chemical could be predicted within a detection limit in the stream. It was also suggested that the rate constant for diffusion/transport and adsorption rate constant are the most influential ones for predicting the chemical conentrations in dissolved and particulate phase. The model proposed appears to be a useful tool for assessing chemical spills.

  • PDF

Reliability Analysis to Contaminant Migration in Saturated Sandy Soils: Implementation and Verification (포화(飽和)된 사질토(砂質土) 내로의 오염물(汚染物) 이동에 관한 신뢰성(信賴性): 수행(遂行) 및 검증(檢證))

  • Jang, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.217-227
    • /
    • 1992
  • The first and second-order reliability method(FORM and SORM) is presented using one dimensional finite difference and two dimensional finite element transport models. FORM and SORM can be used without any restrictive assumptions about the properties of the media, and the sensitivity information obtained as part of these analyses is used to identify the parameters which have major influence on the estimate of probability. The reliability analysis of transport in a one-dimensional domain is used to test the robustness of the reliability code and to evaluate the accuracy of the reliability method. A continuous source 2-D example with a concentration threshold limit state function is used to evaluate the influence of the parameters in the location of interest on the reliability solution.

  • PDF

Vibration Analysis of HDD Actuator with Equivalent Finite Element Model of VCM Coil

  • Kim, Dong-Woohn;Lee, Jin-Koo;Park, No-Cheol;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.679-690
    • /
    • 2003
  • As the rate of increase in areal density of the HDD has accelerated, dynamic characteristics of the HDD actuator need to be improved with respect to the performance of the tracking servo and shock transmission. Therefore, it is important to analyze the vibration characteristic of the HDD actuator that consists of the VCM part, E-block and pivot bearing. In this paper, vibration modes of the HDD actuator are investigated the using finite element and experimental modal analyses methods. To develop a detailed finite element model, finite element models of each components of the actuator assembly are constructed and tuned to the results of the EMA. The VCM coil is modeled as an equivalent finite element model that has an orthotropic material property using auto-model updating program. Auto-model updating program with improved sensitivity based iterative method is applied to build a detailed finite element model using the result of the EMA. A detailed finite element model of the HDD actuator is then constructed and analyzed.

Numerical Analysis on the Design of a Thermal Mass Air Flow Sensor with Various Heating Modes (가열모드에 따른 열식 질량유량센서의 설계 해석)

  • Jeon, Hong-Kyu;Lee, Joon-Sik;Park, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.876-883
    • /
    • 2007
  • Numerical simulations are conducted for the design of a micro thermal mass air flow sensor (MAFS), which consists of a microfabricated heater and thermopiles on the silicon-nitride ($Si_3N_4$) thin membrane structure. It is important to find the proper locations of these thermal elements in the design of MAFS with improved sensitivity. Three heating modes of the micro-heater are considered: constant temperature, constant power and heating pulses. The analyses are focused on the membrane temperature profile near the sensing section. Considered are the practical flow velocities, ranging from 3 m/s to 35 m/s, and the corresponding Reynolds numbers from 1000 to 10000. The results show that one of optimum sensing locations is about $100{\mu}m$ away from the microheater. It is concluded that the heating mode and configurations of thermal elements are the main factors for the MAFS with higher sensitivity.

Study on the spectroscopic reconstruction of explosive-contaminated overlapping fingerprints using the laser-induced plasma emissions

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.86-97
    • /
    • 2020
  • Reconstruction and separation of explosive-contaminated overlapping fingerprints constitutes an analytical challenge of high significance in forensic sciences. Laser-induced breakdown spectroscopy (LIBS) allows real-time chemical mapping by detecting the light emissions from laser-induced plasma and can offer powerful means of fingerprint classification based on the chemical components of the sample. During recent years LIBS has been studied one of the spectroscopic techniques with larger capability for forensic sciences. However, despite of the great sensitivity, LIBS suffers from a limited detection due to difficulties in reconstruction of overlapping fingerprints. Here, the authors propose a simple, yet effective, method of using chemical mapping to separate and reconstruct the explosive-contaminated, overlapping fingerprints. A Q-switched Nd:YAG laser system (1064 nm), which allows the laser beam diameter and the area of the ablated crater to be controlled, was used to analyze the chemical compositions of eight samples of explosive-contaminated fingerprints (featuring two sample explosive and four individuals) via the LIBS. Then, the chemical validations were further performed by applying the Raman spectroscopy. The results were subjected to principal component and partial least-squares multivariate analyses, and showed the classification of contaminated fingerprints at higher than 91% accuracy. Robustness and sensitivity tests indicate that the novel method used here is effective for separating and reconstructing the overlapping fingerprints with explosive trace.

Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body (탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화)

  • Choi, JaeNeung;Lee, Sangho;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

Rapid Determination of Volatile Organic Compounds in Human Whole Blood Using Static Headspace Sampling with Gas Chromatography and Mass Spectrometry

  • Lee, Ji-Young;Kim, Seungki;Lee, Jong-Tae;Choi, Jong-Ho;Lee, Jeongae;Pyo, Heesoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3963-3970
    • /
    • 2012
  • Headspace (HS) and headspace solid-phase microextraction (HS-SPME) were studied for extracting volatile organic compounds (VOCs) from whole blood, with chemical and instrumental variables being optimized for maximum sensitivity: incubation at $60^{\circ}C$, equilibration for 30 min, pH 11, and 2 mL injection volume. Both techniques provided accurate analyses, with detection limits of 0.05-0.1 ng $mL^{-1}$ and 0.05-0.5 ng $mL^{-1}$. HS showed better sensitivity, reproducibility, and analysis times than HS-SPME. Overall levels of chloroform in whole blood were found to be 0.05-5.84 ng $mL^{-1}$; detected levels of benzene were 0.05-2.20 ng $mL^{-1}$.