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Abstract

The first and second-order reliability method(FORM and SORM) is presented using one dimen-
sional finite difference and two dimensional finite element transport models. FORM and SORM can
be used without any restrictive assumptions about the properties of the media, and the sensitivity
information obtained as part of these analyses is used to identify the parameters which have major
influence on the estimate of probability. The reliability analysis of transport in a one-dimen-
sional domain is used to test the robustness of the reliability code and to evaluate the accuracy
of the reliability method. A continuous source 2-D example with a concentration threshold limit
state function is used to evaluate the influence of the parameters in the location of interest on
the reliability solution.

......................................................................................................................

1. Introduction deal of interest in developing predictive models
to the scientist and engineers for the possible me-

The problems caused by the migration of con- chanisms. The analysis of contaminant transport
taminants in groundwater have generated a great in natural environment is complicated by the
_ inherent heterogeneity of the materials and the
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in adequately characterizing the transport process.
The analysis of contaminant migration involves
significant prediction uncertainty and, there is a
need to develop probabilistic techniques for the
analysis of contaminant transport.

The applications of these techniques to evalua-
tion of the prediction uncertainty were explored
in recent papers by Sitar et al”, Cawlfield and
Sitar®, and Wagner and Gorelik.® Sitar et al.
have applied the first-order and second moment
reliability method(FORM) to three ksubsurface
flow and contaminant migration examples and
illustrated the capability of the method. Cawlfield
and Sitar® extended this approach to a 2-D finite-
element analysis of steady-state groundwater flow
and investigated the effects of spatial variability.
Input parameters used in their analysis are as-
sumed to be random and the spatial variability
of hydraulic conductivities was incorporated by
defining in terms of correlated random variables
at every element in the flow domain. The impor-
tance of the spatial variability of the hydraulic
conductivity was shown in terms of its effect on
computed reliability estimates. Wagner and Gore-
1ik® used the first-order reliability approach coup-
led with a management model to find an optimal
pumping strategy which satisfies the given water
quality objectives. The mean centered first order
reliability method was used to estimate the statis-
tical moments of the random variables. Unknown
parameters estimated were: the effective porosity,
hydraulic conductivity, longitudinal and transverse
dispersivity. The estimated parameter values were
input into the optimization model. The uncertainty
model in this analysis did not incorporate spatial
variability.

In the present paper, the first and second order
reliability methods, FORM and SORM, are intro-
duced to the extent needed to understand their
application to contaminant transport. A one-di-
mensional finite difference model of advection do-
minated transport is used to evaluate the robust-
ness of the reliability algorithms and to evaluate
their accuracy. Specifically, the influence of corre-
lation length and input parameter variance is exa-
mined.
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Example application of the first and second or-
der reliability models to 2-D contaminant trans-
port analysis are presented. The purpose of the
2-D transport reliability model is to extend the
reliability analysis to a wider range of problems,
to be able to account for the transverse spreading
of the contaminant which may influence the ad-
vance of the plume, and to handle more complex
problems such as geological and statistical aniso-
tropy. In the 2-D contaminant transport, the
source was assumed to be continuous and the
probability that a given concentration will be ex-
ceeded at a point of interest and time is evalua-
ted.

2. First and Second Order Reliability Me-
thods

In the analysis of contaminant transport, “fai-
lure” may be defined as the occurrence of a con-
centration equal to or greater than a specified
threshold, i.e. a regulatory standard, over a given
period of time in a region of interest. The reliability
problem is then formulated in terms of a limit state
function, denoted as g(X), where X is the vector
of the random variables, and g(X)<0 denotes the
region in which the threshold value is met or ex-
ceeded (i.e. failure occurs). The boundary between
the region in which the concentration is not ex-
ceeded and the region in which the concentration
is exceeded is given by g(X)=0 and is called the
limit state surface. One possible formulation of
the limit state function for a threshold concentra-
tion, C, is:

gX)=C—Cx, vy, t) ¢)]

where C(x, y, t) is the concentration at a specified
location(x, y) at time t.

The probability that the threshold value is ex-
ceeded, or p=P[C,< C(x, v, t}] is obtained by
integrating the joint pdf in the region where g(X)
<9, ie.

p=PlgX)<0]= [

2X)<0

f(X)dx (2)

in which f(X) is the joint pdf of X and the n-fold
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integral is over the unsafe region. In practice, a
direct numerical evaluation of the multifold inte-
gral is -virtually impossible. Hence, FORM and
SORM have been developed to approximately
evaluate the integral®

In FORM and SORM, the integral given in
equation (2) is evaluated in standard normal space
by transforming the basic random variables, X,
into a set standard normal variates, U=UX)

having the pdf:

or(w=(2n) " exp [~ % (U17] @

where n is the number of random variables. With
this transformation, the probability intergral in
equation (2) is written in the form.

b=

()0

On{u)du (4)

where G{u)=g(X(u)) is the limit-state function in
the transformed space.

The point on the limit state surface closest to
the origin, known as the design point and denoted
by u* in Fig. 1, has the highest likelihood among
all failure points and the region in the immediate
neighbourhood of the design point is the main
contributor to the probability intergral (equation
2). Thus, a good approximation of the probability
integral can be obtained if the integration boun-
dary in the standard normal space, G(U)=0, is
replaced with an approximating surface which

Limit State Surface
N . Ba=0
~
Y
“
N v
Glu)<0
® ,Design Point u”
Gluy>0 f
// R
8 N _Parabola
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S
/ N
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\\ v .. TaNgent Plane
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Fig. 1. First and second order approximation of li-
mit state surface in stansard space.
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closely matches the actual boundary in the neigh-
borhood of the design point. This is the basic idea
behind FORM and SORM.

In FORM, the limit state surface is replaced
by a tangent hyperplane at the design point u*.
The distance from the origin, B, known as the
reliability index is given by the inner product

p=a*a* ®)

where a* is the unit normal at the design point
directed toward the failure region. The first order
approximation, Py, to P is »

Pi=®(-p) (6)

where @®( ) is the standard cumulative normal
probability.

The FORM approximation works well as long
as the limit state surface has only one minimal
distance point and is nearly flat in the neighbou-
rhood of the design point. However, when the li-
mit-state surface is curved, which may occur if
the limit-state function is highly non-linear or
when the input variables are strongly non-normal,
a higher order approximation may be required.
In the analysis of contaminant transport, especially
if the simulated flow domain is a random field,
such an approximation is typically necessary, be-
cause of the non-linearity of the limit-state func-
tion.

Point-fitting SORM. where the limit-state func-
tion is fitted with a piecewise paraboloid surface
that is tangent at the design point is used to com-
pute the probability of second order reliability.®

3. Sensitivity Measures

An important aspect of the first-order reliability
method is that measures of sensitivity of the re-
liability index, B, and of the first-order estimate
of the failure probability, P,, with respect to the
parameter defining the probability distribution and
the limit state function are obtained as a part of
the solution. The basic measure of sensitivity is
the partial derivative of 3 with respect to the
coordinates of the design point in the standard
normal space given hy
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V*B=a* Y]

in which a*=—VG(@u*)/ | VGu*) | is the vector
normal to the limit-state surface at the design
point and directed towards the failure set. The
sensitivity of § with respect to the coordinates
of the design point in the original space is given
by the chain rule:

VX*B: (1* Ju", y* (8)

Since the values of V,. B are dependent on the
units of x, Der Kiureghian and Ke® scaled the
gradient vector by the matrix of standard devia-
tions and defined the unit vector

aw' J.. D

= | a(w)” J., D |

)]
where D is the diagonal matrix of standard devia-
tions of X. Thus, the unit vector y(x*) at the de-
sign point measures the scaled and normalized
sensitivities of B with respect to the variations
in the coordinates of x*. As such, this vector pro-
vides a measure of relative importance of each
basic variable X.

The sensitivity of § with respect to parameters
6 defining the distribution function of x, i.e., fi(x,
0) (such as means, standard deviations, etc.) is
given by

ou*(x*, 0)
o0

Ju*(x*, 0)

vV B=a* (10)

in which,
tive of the random variables in the transformed
space with respect to 8 at the design point.

represents the deriva-

4, Transport Model Formulation

The analyses performed in this study are limi-
ted to transport of a conservative solute in a po-
rous medium in a steady state flow which can
be described by the advection equation of the
form:

oC

~a—t-— +vWC—-v(D - vC)—C,=0 an
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where C is concentration of solute, C, is concen-
tration at the source nodes, D is the dispersion
coefficient, and V is the average linear velocity
of groundwater. The dispersion coefficient in
equation (11) is given by:

A V2
Do=ai 72— tor —=— +D*
Ty ey P (12a)
V2 V.2
= L 4 — +D*
D,=a T TR D (12b)
VA
Dy =Dy= (01— ar) (12¢)

|V
where ar and ar are the longitudinal and trans-
verse dispersivities.

The average kinear flow velocity, V, is obtained
from Darcy’s law

v=- Zon (13)

n

where K and n denote element hydraulic conduc-
tivity and porosity, respectively. Two different nu-
merical models are used to solve the advection-
dispersion equation: a 1-D finite difference model
and a 2-D Galerkin finite element model. The fi-
nite difference model employs a simple central
difference approximation and is used to test the
FORM and SORM algorithms and to perform sen-
sitivity and verification analysis.”

The 2-D Galerkin finite element model uses a
four isoparametric quadriateral elements for spa-
tial discretization for both flow and transport, and
implicit finite difference approximation in time.
This is a well known formulation(see e.g., Huya-
korn and Pinder®) which produces two sets of
linear algebraic equations as follows:

nn

vV i | Ii_ m+
= [/ [VNN, ~DYN N, + o 'dA |

= 21 1, Et Crda| (14a)

= [/,[Kv NvNohdaT= X [f,aNda| 14b)
e=1 e=1

where C™*! is the concentration at node j at the
time step (m+1), h; is the hydraulic head at node
J» Qe is uniformly distributed flux, nn is the num-
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ber of elements, and n is the number of nodal
points.

The velocities in the numerical solution of the
flow equation are computed at the Gaussian quad-
rature points in each element. For the contami-
nant transport solution, the velocity at a centroid
is calculated by taking average of four global x
and y components of velocity at the Gauss points,
respectively. The reliability analysis are performed
by coupling the respective transport modules to
a reliability shell, CALREL.®

5. Reliability Analysis of Transport in a
One-Dimensional Domain

FORM and SORM analyses of contaminant
transport in a one-dimensional domain are used
to demonstrate the robustness of the reliability
code and to evaluate the accuracy of the reliability
analysis methods. The problem posed is to esti-
mate the probability that the concentration at a
point located 40 m downgradient from a transient
source lasting 30 days will exceed a specified con-
centration, within 300 days after the start of the
injection. The discretized model has 81 nodes with
1.0m spacing and a time step of 1 day is used.
The source is located at x==10 m and the observa-
tion point at x=50 m. The dispersivity and hy-
draulic conductivity of the porous medium are
characterized by those of sandy soils, ie., by the
means and standard deviations W=/1m, 6,=0.1
m, px=3 m/day, ox=0.3 m/day, respectively. The
distribution of K is assumed to be lognormal and
the distribution of the other variables, i.e., disper-
sivity, boundary head, are assumed to be normal.
All variables are assumed to be mutually, statisti-
cally independent. Porosity of the soil is assumed
to be deterministic constant with a value of 0.3.

In order to examine the influence of spatial va-
riability and to examine the influence of correla-
tion length, K and a are treated as random fields.
Exponential correlation function, p(d) is used for
the random field representation of K and a, ie.:

p(d)y= exp[ —1d] J (15)
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in which |d| denotes the distance between two
points of interest and A is the correlation length.
Correlation length A==2m and 10m is used for
most examples presented here.

The limit state function in this case is given
by:

gX)=a—C(50, 300) a=0.05, 0.1, 0.2 C, (16)

in which C(50, 300) denotes the concentration
which can be reached during the time interval
of 300 days at x=50m. Negligible variation in
hydraulic heads at the two boundaries and the
concentration at the source is assumed because
the influence of spatial variability in hydraulic
conductivity and dispersivity is of main interest
in these analyses. The mean hydraulic gradient
across the domain, based on the mean values of
the hydraulic heads at boundaries, is 0.01.

Fig. 2 shows the computed concentration pro-
files using FORM at the design point for threshold
values of a=0.05 0.1 and 0.2 C, as compared
with the concentration profile computed using the
mean values of parameters which gives C=0.081
C, at x=50m. As already discussed, the values
of the random variables at the design point give
a solution with the highest probability of ex-
ceeding the specified threshold. The plotted de-
sign point concentration profiles obtained using
the values of 0.1 C, and 0.2 C, are greater than
the mean value solution at the point of interest.

The first-order estimate of the probability of
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Fig. 2. Concentration distribution at the design
point for the different threshold concentra-
tions.
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Fig. 3. Distribution of hydraulic conductivity (a),
and dispersivity (b}, at the design point for
correlation length, Ax=A,=2 and 10m.

exceeding 0.1 C,, P,[C(50, 300)=0.05 C,] in which
threshold concentration is smaller than mean
value solution, has the value of 0.907, Thus, it
is relatively unlikely that the concentration at the
point of interest would reach the value 02 C,
300 days after the start of contaminant release,
and it is highly likely that the concentration at
the target point would exceed the concentration
0.05 C,.

The hydraulic conductivity values at the design
point corresponding to a=0.1 C, and the sensi-
tivity of this solution to K and a are shown in
Fig. 3 to 4. As can be seen in Fig. 3, the hydraulic
conductivity at the design point is greater than
the mean throughout the flow region while the
dispersivity is greater than the mean upgradient
from the point of interest.

These results are consistent with the require-
ment that for a given head gradient, higher K
and a values are needed to produce concentration
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Fig. 4. Local Sensitivity of B to distribution para-
meters ox and 6, Ax=A,=10m

higher than the mean at the point of interest.
Increasing the correlation length from 2m to 10m
has relatively small effect, although the fluctuation
in the design point values of K and a are
smoothed out as the correlation length increases,
Le., the domain becomes more uniform. The sensi-
tivity of B to standard deviation of hydraulic
conductivity and dispersivity is shown in Fig. 4.
The sensitivities of B to o of hydraulic conduc-
tivity are uniform over the domain except the
node of interest and the source nodes. Negative
sensitivity of B along the contaminant travel path
indicates that B decreases if the standard devia-
tion of input parameters along the travel path
increases. Sensitivities decrease with increasing
standard deviation for hydraulic conductivity.

The accuracy of the FORM and SORM analysis
is evaluated by comparison with Monte Carlo
simulations, since neither numerical nor analytical
estimates of the probabilities of exceeding thresh-
old values are available from previous stochastic
analysis of contaminant transport.

The results of analyses for the two threshold
values, C,=0.1 and 0.2 C,, are plotted versus coef-
ficient of variation of K in Fig. 5a, b. They show
that for standard deviation ox<(0.lpg all three
methods give comparable results; however, as the
standard deviation increases above 0.1 px, the first
order reliablity results diverge from the SORM
and Monte Carlo results and tend to overestimate
the probability of exceeding threshold values. The
difference between FORM and SORM is due to
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the fact that FORM neglects the curvature of the
limit state surface at the design point which
increases as oy increases.

The influence of correlation length on the com-
puted probability assuming ox=0.1ux and ox=05
pk is shown in Fig. 6a, b. In both cases the prob-
ahility increases as the correlation length increa-
ses. This means that the plume may migrate fas-
ter as the hydraulic conductivities become more
correlated, i.e., the medium is more homogeneous.
For small oy the results of FORM and Monte
Carlo simulation are fairly comparable(Fig. 6a);
however, for large ox the discrepancy between
the two results i¢ significant, although the results
tend to converge as the correlation length in-
creases(Fig. 6h).

6. Reliability Analysis of Transport in a
Two-dimensional Domain

The reliability analysis to two dimensional con-
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Fig. 7. Finite element mesh for concentration thre-
shold analysis in a two-dimensional do-
main

taminant transport is presented to evaluate the
probability of exceeding a threshold concentration
in a steady state sonfined flow field with a conti-
nuous contaminant source. Fig. 7 shows the dis-
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cretized domain measuring 60X 70 m and overlain
by a grid consisting of 195 nodes and 168 quadri-
lateral elements.

Three continuous source nodes are located at
the upstream boundary and two points of interest
are considered: point A at location (40, 30) which
is on the line of the maximum concentration and
point B at location(40, 20) which is slightly off
the line of the maximum concentration. The posed
problem is to estimate the probability that the
concentration at the node of interest exceeds con-
centration 0.1 C, during the course of 100 days of
contaminant leakage which leads to the follow-
ing limit state functions:

gX)=02 C,—C(40, 30, 100)
gX)=0.2 C,— C(40, 20, 100)

(17a)
(17b)

in which C(40, 30, 100) is the concentration at
point A, C(40, 20, 100) is the concentration at
point B, and the period of interest is 100
days.

The properties of the soil are assumed to have
the following characteristics: ux=3m/day, cx=0.3
m/day; o, =10m, 64 =1m; and po;=3m, 6e;=0.3
m. The distribution of the element hydraulic con-
ductivities is assumed to be lognormal and all of
the other variables are assumed to be normally
distributed. Correlation length of spatially dis-
tributed variables K, a. and ar is assumed 20m
and the exponential correlation function is used.
Hydraulic heads at the upstream and at the down-
stream boundary are modelled as random varia-
bles with p,=2.0m, and p,=0.6m, respectively, and
o1,=0.14m. Porosity is assumed to be a determin-
istic constant with a value of 0.3. Thus, the total
number of randem variables in the problem with
dispersivity modelled as a random field is 530,
which includes three random variables K, a; and
or in each element, and 26 constant boundary
heads.

7. Analysis Results
The contours of concentration at the design

point for both cases are shown in Fig. 8. The re-
sults show that shape of the contours of the con-
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Fig. 8. Design point concentrations for cases A
and B

centration at the design point for case B is shifted
in the direction of the node of interest to give
the required concentration 0.2 C, at the node.

The probability that the threshold concentration
will be exceeded is greater in case A than in case
B, as could be expected intuitivety, given the po-
sition of the node of interest relative to the mean
direction of travel of the contaminant plume.

The contours of K at the design point, ie. the
point which gives the highest probability of ex-
ceeding the threshold, are shown in Fig. 9 for
both points of interest. In case A, the design point
value of hydraulic conductivity is generally higher
than px throughout the domain and gradually in-
crease to a maximum along the center of the con-
taiminant travel path(Fig. 9.). Higher design point
values of K result in higher flow velocity and the
threshold -concentration greater than the mean
concentration at the node of interest can be
reached. In. case B, high design point values of
K occur along a line connecting the source nodes
and the node of interest.

The design point values of K in case B are
generally higher than those in case A, since the
threshold value is farther from the mean value
solution and, therefore, higher K is needed to
reach the threshold concentration.

Contour of local gamma sensitivity to K is
shown in Fig. 10 for both cases. As would be ex-
pected, the gamma sensitivities to K are high at
the source, the node of interest, and along the
contaminant travel path between the source and
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the node of interest. Sensitivities are highest
along the mean contaminant travel path in case
A, and along the line connecting the source and
the node of interest in case B.

An interesting result of the reliability analysis
is the sensitivity of the reliability index, B, to the
parameters of the distributions. Contour of local
sensitivity of B to wx is shown in Fig. 11.

The sensitivity of 8 to ux is high along the con-
taminant travel path and it is highest at the sou-
rce node and upgradient from the node of in-
terest. Negative sensitivity values along the con-
taminant travel path indicate that B decreases as
pk increases. Sensitivity of § to ox are presented
in Fig. 12. High negative sensitivities occur along
contaminant travel path for both distribution para-
meters. Again in this case, negative sensitivity in-
dicates that an increase in ox along the contami-
nant travel path reduces § and, therefore, prob-
ability of exceeding threshold increases.

8. Conclusion

Modeling contaminant transport in a subsurface
environment is a difficult process because the
parameters obtained in the field vary spatially and
the governing scale of heterogeneity depends on
the scale of the transport process. Advection-dis-
persion equation has been used most frequently
for analysis of contaminant transport both in the
laboratory and in the field. The problem with
application of this equation to the field scale
transport is that the uncertainties in the material
properties and transport process cannot be accou-
nted for explicitly.

In this paper, the application of the first and
second order reliability of contaminant migration
is presented, by linking the first and second order
formulations to one dimensional numerical and
two dimensional numerical transport routines. The
1-D transport reliability analysis was used to
explore the influence of spatial variability and
spatial correlation on the predicted probabilities
of exceeding threshold concentrations. The results
of the numerical analysis show that the P; increa-

—226—

ses as correlation length increases. The computed
sensitivities of the solution to the input parameter
show that the solution is most sensitive to hy-
draulic conductivity at the source and the node
of interest. Sensitivity distribution reflects the 1-
D geometry of the domain in which a perturbation
at any node can equally influence on the node
of interest. In the case when the variance of the
hydraulic conductivity is large, the first order re-
liability lacks sufficient accuracy and, for good ac-
curacy, the second order reliability analysis need
to be employed.

For the reliability analysis of the two-dimension-
al contaminant transport, concentration threshold
limit state function was used to evaluate the in-
fluence of the position of the node of interest on
the reliability solution. In the case when the node
of interest is located along the axis of the maxi-
mum concentration of the plume, sensitivities to
hydraulic conductivity and dispersivity are high
along the contaminant travel path and they are
highest around the source and the node of
interest. In the case when the node of interest
is located off the line of the maximum concentra-
tion, high sensivities are located along the line
connecting the source and the node of interest
which is not necessarily the path of the center
of the plume.
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