• Title/Summary/Keyword: Sensitivity Method

Search Result 5,619, Processing Time 0.03 seconds

Sensitivity Analysis using FRF-based Substructuring Method (전달함수합성법을 이용한 민감도 해석)

  • Lee, Doo-Ho;Hwang, Woo-Seok;Kim, Chan-Mook
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.602-606
    • /
    • 2000
  • A general procedure for the design sensitivity analysis of structural dynamic problems has been presented in frame of the FRF-based substructuring formulation. In the procedure, the direct differentiation method is used for the sensitivity formula. For a system response function, the proposed method gives a parametric design sensitivity formula in terms of the partial derivatives of the connection element properties and the transfer matrix of the subsystems. The derived design sensitivity formula is applied to a numerical example. The comparison of sensitivities derived by the proposed method and the finite difference method shows that the proposed method is efficient and accurate.

  • PDF

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

Low-discrepancy sampling for structural reliability sensitivity analysis

  • Cao, Zhenggang;Dai, Hongzhe;Wang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.125-140
    • /
    • 2011
  • This study presents an innovative method to estimate the reliability sensitivity based on the low-discrepancy sampling which is a new technique for structural reliability analysis. Two advantages are contributed to the method: one is that, by developing a general importance sampling procedure for reliability sensitivity analysis, the partial derivative of the failure probability with respect to the distribution parameter can be directly obtained with typically insignificant additional computations on the basis of structural reliability analysis; and the other is that, by combining various low-discrepancy sequences with the above importance sampling procedure, the proposed method is far more efficient than that based on the classical Monte Carlo method in estimating reliability sensitivity, especially for problems of small failure probability or problems that require a large number of costly finite element analyses. Examples involving both numerical and structural problems illustrate the application and effectiveness of the method developed, which indicate that the proposed method can provide accurate and computationally efficient estimates of reliability sensitivity.

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

A Study on the G-Sensitivity Error of MEMS Vibratory Gyroscopes (진동형 MEMS 자이로스코프 G-민감도 오차에 관한 연구)

  • Park, Byung-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1075-1079
    • /
    • 2014
  • In this paper, we describe the analysis and the compensation method of the g-sensitivity error for MEMS vibratory gyroscopes. Usually, the g-sensitivity error has been ignored in the commercial MEMS gyroscope, but it deserves our attention to apply for the missile application as a tactical grade performance. Thus, it is necessary to compensate for the g-sensitivity error to reach a tactical grade performance. Generally, the g-sensitivity error seems intuitively to be a gyroscope bias error proportional to the linear acceleration. However, we assert that the g-sensitivity error mainly causes not a bias error but a scale-factor error. And we verify that the g-sensitivity scale-factor error occurs due to the non-linearity of parallel plate electrodes. Therefore, we propose the compensation method to remove the g-sensitivity scale-factor error. The experimental result showed that a proposed compensation method improved successfully the performance of the MEMS vibratory gyroscope.

Adjoint Variable Method Combined with Complex Variable for Structural Design Sensitivity (보조변수법과 복소변수를 연동한 설계 민감도 해석 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • The adjoint variable method can reduce computation time and save computer resources because it can selectively provide the sensitivity information for the positions that designers wish to measure. However, the adjoint variable method commonly employs exact analytical differentiation with respect to the design variables. It can be cumbersome to precisely differentiate every given type of finite element. This trouble can be overcome only if the numerical differentiation scheme can replace this exact manner of differentiation. But, the numerical differentiation scheme causes of severe inaccuracy due to the perturbation size dilemma. For assuring the accurate sensitivity without any dependency of perturbation size, this paper employs a complex variable that has been mainly used for computational fluid dynamics problems. The adjoint variable method combined with complex variables is applied to obtain the shape and size sensitivity for structural optimization. Numerical examples demonstrate that the proposed method can predict stable sensitivity results and that its accuracy is remarkably superior to traditional sensitivity evaluation methods.

Sensitivity Analysis on the Non-tree Solution of the Minimum Cost Flow Problem (최소비용문제의 비정점 최적해에 대한 감도분석)

  • 정호연;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The purpose of this paper is to develop a method of the sensitivity analysis that can be applied to a non-tree solution of the minimum cost flow problem. First, we introduce two types of sensitivity analysis. A sensitivity analysis of Type 1a is the well known method applicable to a tree solution. However this method can not be applied to a non-tree solution. So we propose a sensitivity analysis of Type 2 that keeps solutions of upper bounds at upper bounds, those of lower bounds at lower bounds, and those of intermediate values at intermediate values. For the cost coefficient we present a method that the sensitivity analysis of Type 2 is solved by finding the shortest path. Besides we also show that the results of Type 2 and Type 1 are the same in a spanning tree solution. For the right-hand side constant or the capacity, the sensitivity analysis of Type 2 is solved by a simple calculation using arcs with intermediate values.

  • PDF

Sensitivity Analysis of Power System Oscillation Modes Induced by Periodic Switching Operations of SVC by the RCF Method (RCF 기법을 이용한 SVC의 주기적 스위칭 동작에 의한 전력계통 진동모드 감도해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.363-368
    • /
    • 2008
  • In this paper, the Resistive Companion Form(RCF) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS equipments such as SVC. The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including SVC. As a result of simulation, the RCF analysis method is proved very effective to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of SVC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and proved that the RCF analysis method is very effective to analyze the discrete power systems including periodically operated switching equipments such as SVC.

Adjoint Variable Method combined with Complex Variable for Structural Design Sensitivity (보조변수법과 복소변수를 연동한 설계 민감도 해석 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.418-423
    • /
    • 2008
  • Among various sensitivity evaluation techniques, semi-analytical method is quite popular since this method is more advantageous than analytical method and global finite difference method. However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, the adjoint variable method combined with complex variable is proposed to obtain the shape and size sensitivity for structural optimization. The complex variable can present accurate results regardless of the perturbation size as well as easy to be implemented. Through a few numerical examples of the static problem for the structural sensitivity, the efficiency and reliability of the adjoint variable method combined with complex variable is demonstrated.

  • PDF