• Title/Summary/Keyword: Sensitivity Engineering

Search Result 5,804, Processing Time 0.031 seconds

CMOS Image Sensor with Dual-Sensitivity Photodiodes and Switching Circuitfor Wide Dynamic Range Operation

  • Lee, Jimin;Choi, Byoung-Soo;Bae, Myunghan;Kim, Sang-Hwan;Oh, Chang-Woo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.223-227
    • /
    • 2017
  • Conventional CMOS image sensors (CISs) have a trade-off relationship between dynamic range and sensitivity. In addition, their sensitivity is determined by the photodiode capacitance. In this paper, CISs that consist of dual-sensitivity photodiodes in a unit pixel are proposed for achieving wide dynamic ranges. In the proposed CIS, signal charges are generated in the dual photodiodes during integration, and these generated signal charges are accumulated in the floating-diffusion node. The signal charges generated in the high-sensitivity photodiodes are transferred to the input of the comparator through an additional source follower, and the signal voltages converted by the source follower are compared with a reference voltage in the comparator. The output voltage of the comparator determines which photodiode is selected. Therefore, the proposed CIS composed of dual-sensitivity photodiodes extends the dynamic range according to the intensity of light. A $94{\times}150$ pixel array image sensor was designed using a conventional $0.18{\mu}m$ CMOS process and its performance was simulated.

A Second-Order Design Sensitivity-Assisted Monte Carlo Simulation Method for Reliability Evaluation of the Electromagnetic Devices

  • Ren, Ziyan;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.780-786
    • /
    • 2013
  • In the reliability-based design optimization of electromagnetic devices, the accurate and efficient reliability assessment method is very essential. The first-order sensitivity-assisted Monte Carlo Simulation is proposed in the former research. In order to improve its accuracy for wide application, in this paper, the second-order sensitivity analysis is presented by using the hybrid direct differentiation-adjoint variable method incorporated with the finite element method. By combining the second-order sensitivity with the Monte Carlo Simulation method, the second-order sensitivity-assisted Monte Carlo Simulation algorithm is proposed to implement reliability calculation. Through application to one superconductor magnetic energy storage system, its accuracy is validated by comparing calculation results with other methods.

Low-discrepancy sampling for structural reliability sensitivity analysis

  • Cao, Zhenggang;Dai, Hongzhe;Wang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.125-140
    • /
    • 2011
  • This study presents an innovative method to estimate the reliability sensitivity based on the low-discrepancy sampling which is a new technique for structural reliability analysis. Two advantages are contributed to the method: one is that, by developing a general importance sampling procedure for reliability sensitivity analysis, the partial derivative of the failure probability with respect to the distribution parameter can be directly obtained with typically insignificant additional computations on the basis of structural reliability analysis; and the other is that, by combining various low-discrepancy sequences with the above importance sampling procedure, the proposed method is far more efficient than that based on the classical Monte Carlo method in estimating reliability sensitivity, especially for problems of small failure probability or problems that require a large number of costly finite element analyses. Examples involving both numerical and structural problems illustrate the application and effectiveness of the method developed, which indicate that the proposed method can provide accurate and computationally efficient estimates of reliability sensitivity.

Analysis of Response of Lumped Mass System Using Sensitivity Method in Frequency Domain (주파수 영역 민감도 방법을 이용한 집중 질량 구조물의 응답 해석)

  • Baek, Moon-Yeol;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.164-169
    • /
    • 1997
  • The aim of this paper is to present some results of sensitivity analysis in frequency domain. The sensitivity fonctions in frequency domain is not depend on the external excitation but depend on the frequency of the system's resonance. The sensitivity functions are determined as function of partial derivatives of system transfer functions taken with respect to system design parameters. The logarithmic sensitivity function is the dimensionless sensitivity funciton available, making it useful to compare the influence of various parameters on system variables. Two degree of fredom system is used to illustrate the procedure for sensitivity analysis proposed in this paper.

  • PDF

Analysis of Flux Observers Using Parameter Sensitivity

  • Nam H.T.;Lee K.J.;Choi J.W.;Kim H.G.;Chun T.W.;Noh E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.418-422
    • /
    • 2001
  • To achieve a high performance in direct vector control of induction motor, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using Parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function by simulation.

  • PDF

Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method (보조변수법을 이용한 Zwicker 라우드니스의 설계민감도)

  • Wang, Se-Myung;Kwon, Dae-Il;Kim, Chaw-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

Stress-Sensors with High-Sensitivity Using the Combined Meandering-Patterns

  • Cho, Chun-Hyung;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this work, the combined meandering-pattern stress-sensors were presented in order to achieve the high sensitivity of stress sensors. Compared to the previous works, which have been using the single meandering-pattern stress-sensors, the sensitivity was approximately observed to increase by 30%~70%. Also, in this paper, more simple and convenient stress-measurement method was presented.

Towards the Development of Long-Life Crops by Genetic Engineering of Ethylene Sensitivity

  • Ezura, Hiroshi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2000
  • Food production is a major role of agriculture. It has been projected that the world population continues to increase by the middle of the 21st century, and the population growth results in raising a serious problem of food shortage. Thus we have to increase food as possible. A considerable amount of crops have been abandoned due to short-life after postharvest. Ethylene is a factor responsible for the postharvest loss in crops, especially horticultural crops. If we can reduce ethylene production or sensitivity by genetic engineering, we can develop, so called,“long-life crop”conferring long postharvest lives. During last two decades, intensive research for molecular dissection of ethylene biosynthesis has been carried out, and the researchers have succeeded in engineering ethylene productivity in some crops. On the other hand, after the successful isolation of Arabidopsis ethylene receptor gene ETR1, the homolog genes have been isolated in various plant species. Currently the characterization of these genes and alteration of ethylene sensitivity using the genes are in progress. This review summarizes current progress in the analysis of these genes, and discusses genetic engineering of ethylene sensitivity using these genes.

  • PDF

Design Sensitivity Analysis of Eigen Problem Using NASTRAN (NASTRAN을 이용한 고유치 문제의 설계 민감도 해석)

  • 윤광수;이태희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.508-512
    • /
    • 1997
  • Design sensitivity analysis of Eigen Problem give systematic design improvement information for noise and vibration of a system. Based on reliable results form commercial FE code(UAI/NASTRAN), three computational procedures for design sensitivity analysis of eigen problem are suggested. Those methods are finite difference,design sensitivity analysis using external module and design sensitivity analysis running with NASTRAN. To verify the suggested methods, a numerical example is given and these results are compared with the results from UAI/NASTRAN eigen sensitivity option. We can conclude that design sensitivity coefficient of eigen proplems can be computed outside of the FE code as easy as inside of the FE code.

  • PDF

Design Sensitivity Analysis for the Vibration Characteristic of Vehicle Structure (수송체 구조물의 진동특성에 관한 설계민감도 해석)

  • 이재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN on the super computer CRAY2S, and sensitivity computation is carried on PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF