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Abstract – In the reliability-based design optimization of electromagnetic devices, the accurate and 
efficient reliability assessment method is very essential. The first-order sensitivity-assisted Monte 
Carlo Simulation is proposed in the former research. In order to improve its accuracy for wide 
application, in this paper, the second-order sensitivity analysis is presented by using the hybrid direct 
differentiation-adjoint variable method incorporated with the finite element method. By combining the 
second-order sensitivity with the Monte Carlo Simulation method, the second-order sensitivity-assisted 
Monte Carlo Simulation algorithm is proposed to implement reliability calculation. Through 
application to one superconductor magnetic energy storage system, its accuracy is validated by 
comparing calculation results with other methods. 
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1. Introduction 
 

To deal with uncertainty of design variables, the 
reliability-based design optimization (RBDO) algorithm 
has been developed to improve constraint feasibility [1]. 
The performance analysis of the electromagnetic device by 
the finite element method (FEM) needs a huge 
computational cost. Therefore, it is very essential to 
develop the accurate and numerically efficient reliability 
calculation method. The first-order sensitivity-assisted 
Monte Carlo Simulation (FS-MCS) method is proposed in 
[2] to efficiently implement reliability analysis; however, it 
appears insufficient for problems involving large variations 
or having strongly nonlinear performance function. 
Therefore, the application of reliability analysis is still 
restricted especially in the RBDO of real electromagnetic 
problems. 

As it is well known, the second-order design sensitivity 
can improve the convergent efficiency of optimization 
process and can provide more accurate information than 
the first-order one [3]. In fact, the second-order sensitivity 
analysis by the FEM is complicate and computationally 
expensive. For the electromagnetic application problems, 
methods utilizing the second- or higher-order sensitivities 
are much less developed than that in the mechanical 
engineering [4], and therefore are not yet often applicable. 
It is worth mentioning, recently, researchers set about 
studying the second-order sensitivity in the electrical 
engineering. One finite difference technique is used to 

calculate the second-order sensitivity [5]; however, the 
proper step size is difficult to be determined for a higher 
accuracy. In the electric circuit system, the second-order 
capacitance sensitivity is studied by the combination of the 
derivative method and the adjoint variable method. [6]. 

Therefore, in this paper, a hybrid direct differentiation-
adjoint variable method is presented to implement the 
second-order sensitivity analysis of the electromagnetic 
problems by the FEM. Its numerical efficiency is 
qualitatively compared with other methods. Furthermore, 
the second-order sensitivity-assisted Monte Carlo simulation 
(SS-MCS) method is proposed to expedite reliability 
calculation in the RBDO. Its accuracy and numerical 
efficiency is widely discussed with the MCS, the FS-MCS, 
and the reliability index approach (RIA) [1] through 
numerical examples. 

 
 
2. Design Sensitivity Analysis Based on the FEM 
 

2.1. First-order sensitivity analysis 
 
In the FEM, the system equation of the electromagnetic 

problem from Galerkin approximation is written as follows: 
 

 [ ][ ] { }K A Q=  (1) 
 

where [A] is the magnetic vector potential, [K] and {Q} are 
the global stiffness matrix and forcing vector, respectively. 
Usually, the design target of electromagnetic problem such 
as system energy and torque has explicit or implicit 
relations with geometric variables and the state variable [A]. 
The real geometric dimensions (height and width) and 
physical parameter (current density) are normally transferred 
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into design parameters [p] related with nodal mesh. 
Therefore, the derivative of performance function g([p], 
A(p)) with respect to the ith design parameter pi is 
calculated as follows: 
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where terms ∂g/∂pi and ∂g/∂[A]T are problem dependent 
and can be calculated analytically. For the calculation of 
d[A]/dpi, there are following two methods. 

 

A. Direct Differentiation Method (DD) 

 
Firstly, differentiating both sides of (1) with respect to pi, 
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where [Ã] is the converged solution of (1). The numerical 
analysis method such as incomplete Cholesky-Conjugate 
gradient is applied to solve (3). Then substituting the 
solution into (2), the sensitivity can be obtained. 

 

B. Adjoint Variable Method (AV) 
 
For simplification, one adjoint variable [λ] is defined as : 
 

 [ ][ ] [ ]K g Aλ = ∂ ∂  (4) 
 

and then substitute (4) and (3) into (2), the sensitivity is 
expressed by the following equation: 
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Assuming the number of design parameters is n, the DD 

method totally needs (1+n) times FEM analysis: one of (1) 
and n of (3). However, without any relation with the 
quantity of design parameters, the AV method only needs 
(1+1) times FEM analysis: one of (1) and one of (4). 
Therefore, the AV method is superior to the DD method. 

 
2.2. Second-order sensitivity analysis by Hybrid Direct 

Differentiation-adjoint Variable Method (HDD-

AV) 
 
Based on (2), the second-order sensitivity of perfor-

mance function with respect to pi and pj is obtained by 
using the chain rule of differentiation as follows: 
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where the calculation of right two parts is driven as 
follows: 
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Finally, the second-order sensitivity is summarized as: 
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where the second-order derivative of [A] with respect to 
design parameters pi and pj is very difficult to calculate.  

Starting from the DD method, differentiating both sides 
of (3) with respect to pj, the second-order derivative of [A] 
can be calculated as follows:  
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Substituting (7c) and (4) into (6d), the total second-order 

derivative of performance function with respect to pi and pj 
can be expressed as follows: 
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where the second-order derivatives of the global stiffness 
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matrix and the forcing vector (∂2[K]/∂pi∂pj and ∂2{Q}/ 
∂pi∂pj) are accomplished by the local Jacobian derivatives 
[6], other terms are problem dependent and can be 
calculated directly. 

Since the utilization of (3) and (4), this method is called 
the hybrid direct differentiation-adjoint variable (HDD-AV) 
method. Its computational complexity is (n+2) times FEM 
analysis (one of (1), one of (4), and n of (3)), which is 
linear to number of design parameters. As compared with 
other combinations [7] in Table 1, the HDD-AV method is 
the most efficient one so that it will speed up reliability 
analysis and enhance convergence of the RBDO. 

 
 
3. Reliability Calculation Based on First- and 

Second-order Sensitivity Analysis  

 
For the reliability analysis, assuming all uncertain 

variables are independent with each other and follow the 
Gaussian distribution [8], the uncertainty set is defined as: 

 

 { }( ) NU R - k k= ∈ ≤ ≤ +x ξ x σ ξ x σ  (9) 

 
where N is the number of real design variables, ξ is the 
perturbed design of x, k is a constant decided by the 
required confidence level (CL) (e.g, k=1.96 if CL=95%) 
and the standard deviation σ is set zero for a deterministic 
design variable. Once the first- and second-order 
sensitivity information is obtained by the AV and the HDD-
AV methods based on the FEM, respectively, the 
performance constraint, g(x)≥0, in the U(x) can be 
approximated by the Taylor series expansion as follows: 
 

 
( ) ( ) ( ) ( )

( ) ( )( ) 2T

g g g

H

≅ +∇ ⋅ −

+ − −

ξ x x ξ x

ξ x x ξ x
 (10) 

 
where ∇g(x) is the gradient vector and H(x) is the Hessian 
matrix including all the second-order derivatives. Until 
now, the performance constraint function can be treated as 
an analytic function in the uncertainty set. Then the 
conventional Monte Carlo Simulation (MCS) method can 
be applied to evaluate reliability by the following formula:  
 

 ( )( ) 0R g m M≥ =x  (11) 

 
where m is the number of test designs satisfying the 
constraint in (11) among total M random test designs. 
The flowchart of reliability calculation is shown in Fig. 1. 
The SS-MCS is expected to be more accurate than the 
FS-MCS. 

 
 

4. Numerical Results  

 
4.1 Analytic test problem 1 
 
An analytic constraint function with two uncertain 

design variables as shown in Fig. 2, is applied to illustrate 
the necessity of the second-order derivative as follows: 

 

 2
1 2( ) 20 1 0g x x= − ≥x . (12) 

 
The corresponding reliabilities of design A (3.16, 2.15) 

and design B (3.297, 2.905) as marked in Fig. 2, under 
different uncertainties are calculated by using the RIA [8], 
the conventional MCS, the FS-MCS, and the SS-MCS 
methods, respectively. The maximum test designs and CL 
in the MCSs are set one million and 0.95, respectively. The 
results are shown in Table 2. No matter for design A or 
design B, the reliability from the SS-MCS shows better 
consistence with that from the MCS method. When the 
design is close to the constraint boundary such as design A, 
the FS-MCS and RIA methods show lower accuracy as the 

A specified design x with ∇g(x) and 
H(x) calculated from FEM

Generate M test designs ξ, in U(x)

Calculate g(ξ) by (10) for test designs

Evaluate reliability by (11)  

Fig. 1. Flowchart of the sensitivity-assisted MCS method. 

Table 1. Comparison of computational cost [7] 

Method DD-DD AV-AV HDD-AV 
Cost (n+1)(n+2)/2 2n+2 n+2 

 

0 1 2 3 4 5
0

1

2

3

4

5

B

A

Infeasible region

Feasible region

x 2

x
1  

Fig. 2. Analytic constraint function. 
 

Table. 2 Reliability of different designs 

Different standard deviation (σ) 
Design Method 

0.1 0.2 0.3 0.5 0.8 
RIA 0.8138 0.6722 0.6169 0.5708 0.5443 

FS-MCS 0.8327 0.6834 0.6246 0.5752 0.5476 
SS-MCS 0.8357 0.6776 0.6119 0.5504 0.5074 

A 

MCS 0.8355 0.6779 0.6118 0.5503 0.5062 
RIA 1.0000 0.9988 0.9782 0.8870 0.7754 

FS-MCS 1.0000 0.9999 0.9808 0.8791 0.7525 
SS-MCS 1.0000 1.0000 0.9939 0.9051 0.7699 

B 

MCS 1.0000 1.0000 0.9934 0.9052 0.7714 
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standard deviation increases. Fig. 3 compares the relative 
errors of different approximations. It is unquestionable that 
the SS-MCS is superior to the FS-MCS from the viewpoint 
of accuracy, for example, the relative error of the SS-MCS 
is only 0.24% while the FS-MCS is 8.19% and the RIA is 
7.53% when σ=0.8. 

 
4.2 Analytic test problem 2 

 
For a further investigation, a constraint function with 

strong nonlinearity shown in Fig. 4 is selected as follows: 
 

 2 3 4( ) 1 ( 6) ( 6) 0.6( 6) 0g s s s t= − + − + − − − + ≥x  (13) 

 
where 0≤x1, x2≤10, s=ax1+bx2, and t=bx1-ax2 (a=0.9063, 
b=0.4226). In the strongly nonlinear area, three different 
designs are selected as marked in Fig. 4. The results of 
reliability analysis by different methods are compared in 
Table 3. Taking the reliability of the conventional MCS 
method as a reference R0, and the relative error (δR) of 
reliability R from other methods is defined as δR=|R-R0|/ 
R0×100%. From Table 3, it is obvious that due to the first-
order Taylor approximation, the FS-MCS and RIA methods 
are out of operation even under a small uncertainty such as 
σ=0.2, however, the SS-MCS can still give a higher 
accuracy with the maximum relative error of 3.87% when 
uncertainty is increased to σ=0.3. In a word, the application 
space of the SS-MCS is wider than both RIA and FS-MCS. 

From discussions through the above two different 

analytic examples, it can be concluded that the second-
order sensitivity analysis is very essential for the strong 
nonlinear constraint function approximation. The SS-MCS 
can be expected to improve the quality of optimal design in 
the reliability-based design optimization. 

 
4.3 Electromagnetic application to the Supercon-

ductor Magnetic Energy Storage System (SMES) 

 
The superconductor magnetic energy storage (SMES) 

system is applied to guarantee power continuity for very 
sensible loads to deal with sudden perturbations, which are 
caused by the appearance or disappearance of a load on the 
line (voltage surge or sag) and the very short power failures. 
In a word, applications of SMES in power system can 
enhance the system stability and improve power quality [9]. 

Fig. 5 shows the configuration of one SMES system, 
which has been accepted as one benchmark optimization 
problem for testing of electromagnetic analysis method; it 
is composed of two concentric coils carrying current with 
opposite directions [10]. The optimal design of the SMES 
should couple the totally stored energy of E0=180 (MJ) 
with a minimal stray field. To guarantee the inner and outer 
coils running under superconducting conditions, the 
quenching conditions shown in Fig. 6 are taken as constraints 
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Fig. 3. Relative error of reliability for design A. 
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Fig. 4. Analytic constraint function where A(5.376, 1.236), 
B(6.30, 2.21), and C(6.32,4.56). 

Table 3. Comparison of Reliability Calculation 
a 

Design A Design B Design C 
σ   Method 

R δR (%) R δR (%) R δR (%) 
RIA  0.9612 1.908 0.8817 2.682 0.9757 2.205 

FS-MCS 0.9914 1.174 0.8863 2.174 0.9999 0.221 
SS-MCS 0.9830 0.316 0.9051 0.099 0.9944 0.331 

0.1 

MCS 0.9799  0.9060  0.9977  
RIA 0.8112 5.942 0.7230 3.484 0.8380 6.116 

FS-MCS 0.8662 13.125 0.7223 3.578 0.9284 17.564 
SS-MCS 0.7632 0.327 0.7471 0.267 0.7953 0.709 

0.2 

MCS 0.7657  0.7491  0.7897  
RIA 0.7218 15.952 0.6534 4.905 0.7446 27.282 

FS-MCS 0.7678 23.341 0.6525 5.036 0.8299 41.863 
SS-MCS 0.5984 3.872 0.6827 0.640 0.5994 2.462 

0.3 

MCS 0.6225  0.6871  0.5850  
 a Test designs of MCSs are 1,000,000 and confidence level is 0.95. 

 

(a) viewpoint in 3D         (b) viewpoint in 2D 

Fig. 5. Configuration of the SMES system. 
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in the optimization process as follows: 
 

 ,( ) 54.0 6.4 0, 1,2
i m i i
g B J i= − ⋅ − ≥ =x  (14) 

 
where Ji and Bm,i are the current density and the maximum 
magnetic flux density in the ith coil, respectively. 
 

A. Reliability Calculation 
 
For the three-parameter (radius, height, and thickness of 

outer coil) SMES optimization problem [10], the three 
geometric parameters x = [R2, H2, D2]

T are treated as 
uncertain variables. For the first- and second-order 
sensitivity analysis, the following terms of gradient vector 
and hessian matrix need to be calculated: 

 

{ }, 2 , 2 , 2( ) , ,i m i m i m ig B R B H B D∇ = ∂ ∂ ∂ ∂ ∂ ∂x  (15a) 

{ }2 2 2 2 2 2
, 2 , 2 , 2( ) , ,m i m i m iH B R B H B D= ∂ ∂ ∂ ∂ ∂ ∂x  (15b) 

 
where the crossed terms of H(x) are ignored. The adjoint 
variable in (8) is obtained by solving equation as follows: 

 

 , ,[ ][ ] [ ], 1,2.
m i m i

K B A iλ = ∂ ∂ =  (16) 

 
Considering the computational burden of the FEM 

analysis, the proposed SS-MCS, the conventional MCS, 
and the FS-MCS are applied with 10,000 maximum test 
designs and CL of 0.95. Table 4 shows the reliability 
calculation result of optimal designs selected from 
published papers about the SMES when σ=[15.3, 10, 10]T 

(mm). Taking the reliability from the MCS as a reference 
value, Fig. 7 shows the relative errors by the FS-MCS and 
SS-MCS methods. It can be seen that the results of the SS-
MCS method match well with the MCS method.  

The performance of the FS-MCS and the SS-MCS under 
different standard deviations listed in Table 5 is investigated 
by a design x= [3.093, 0.239, 0.391]T (m). From Fig. 8, it 
can be seen that the FS-MCS and SS-MCS methods can 
give exactly same results as the MCS in the narrow 
uncertainty set such as σ1 and σ2. The FS-MCS method, 
however, results in bigger error as the standard deviation 
increases such as σ4. On the other hand, the SS-MCS 
shows higher accuracy even under bigger uncertainty. 

 

B. Reliability-Based Design Optimization (RBDO) 
 
In the optimization process, the objective function is 

formulated by combing system energy (E) and stray field 
( Bs ) as follows: 
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Fig. 6. Quenching curve of the superconductor. 

 
Table 4. Result of reliability calculation 

No. Optimal design x [m]  Reliability of g2(x) a 
 R2 H2/2 D2  FS-MCS SS-MCS MCS 

1[10] 3.08 0.239 0.394  0.9805 0.9807 0.9807 
2[12] 3.05 0.246 0.400  0.7200 0.7232 0.7231 
3[13] 2.6602 0.5574 0.2218  0.9500 0.9512 0.9521 
4[14] 3.0988 0.26435 0.3903  0.6679 0.6708 0.6716 
5[15] 3.0197 0.3081 0.3496  0.5158 0.5215 0.5210 

a Reliability of g1(x) for all cases is 1.0. 
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Fig. 7. Relative errors of different approximations. 
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Fig. 8. Comparison of different uncertainties 
 

Table 5. Different uncertainties in Fig. 8 

Uncertainty of different variables [mm] 
case 

σ(R2) σ(H2/2) σ(D2) 
σ1 15.3 10 10 
σ2 20 10 15 
σ3 30 10 15 
σ4 40 15 15 
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where Bn=3 (mT), and Bs,i is the magnetic flux density of 
the ith sampling point. Then the RBDO is formulated [8, 
11] as follows: 
 

 ( )
minimize ( )
subject to ( ) 0 , 1, 2t

i i

f
R g R i≥ ≥ =
x

x  (18) 

 
where Rt is the target reliability. Uncertainties are 
considered in both geometric and physical parameters as 
x = [R2, H2, D2, J1, J2]

T, where σ = [40, 15, 15]T (mm) for 
geometric parameters, and the current densities follow 
Gaussian distribution with mean value of µ = 22.5 
(MA/m2) and standard deviation of σ = 0.179 (MA/m2), 

respectively. Other parameters and design range are listed in 
Table 6 [10]. 

The single objective particle swarm optimization algorithm 
is applied to (18) with 30 particles and 300 maximum 
iterations. The optimization results are shown in Table 7. It 
can be seen that, with the same target reliability, the reliable 
designs from different approximations can give similar 
objective values. All the reliable designs can satisfy the 
energy requirement; furthermore, as shown in Fig. 9, the 
solutions from RBDO can also guarantee a smaller stray 
field compared with the classical optimum. Since the 
accurate reliability calculation of the SS-MCS, the obtained 
design is more reliable to give bigger margins for 
constraints than that from the FS-MCS and the classical 
optimization. Therefore, the SS-MCS method can guarantee 
the more reliable solutions in the RBDO.  

 
 

5. Conclusion 
 
This paper presents the second-order sensitivity analysis 

by the HDD-AV method based on the FEM. The proposed 
second-order sensitivity-assisted Monte Carlo simulation 
method (SS-MCS) is successfully applied to the reliability 
calculation of electromagnetic device. The numerical results 
of analytic functions and the SMES system show that the 
second-order sensitivity can definitely improve the accuracy 
of the reliability calculation. The SS-MCS method can be 
used to efficiently improve the feasibility robustness of 
constraints in the RBDO of the electro-magnetic devices. 

This paper clearly brings out problem domains in which 
the sensitivity-assisted MCS reliability calculation algorithms 
(FS-MCS and SS-MCS) will have superiority over other 
counterparts (MCS and RIA) and should encourage 
motivations to the reliability-based design optimization. 
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Table 6. Design space and values used in optimization 

 Inner coil  Outer coil 
[m] R1 H1/2 D1  R2 H2/2 D2 
Min - - -  2.6 0.204 0.1 
Max - - -  3.4 1.100 0.4 
Fix 2.0 0.8 0.27  - - - 

 
Table 7. Results of reliability-based design optimization 

Rt=0.8  Rt=0.9 Typical 
designa 

Classical  
FS-MCS SS-MCS  FS-MCS SS-MCS 

R2 [m] 3.0819 3.0827 3.0829  3.0898 3.0895 
H2/2 [m] 0.2439 0.2475 0.2472  0.2679 0.2693 
D2 [m] 0.3849 0.3793 0.3795  0.3486 0.3472 
f(x)×10-2 8.7719 8.7732 8.7731  8.8211 8.8246 
Bs

2 [10-7T2] 7.8948 7.8958 7.8958  7.9390 7.9421 
E [MJ] 180.0000 179.9999 180.0000  180.0000 179.9999 
g1(x) -7.8959 -7.7884 -7.8813  -7.7919 -7.7991 
g2(x) -1.3835 -1.4764 -1.4775  -2.1140 -2.1310 

a Each optimal design is selected among 20 independent runs. 

0 1 2 3 4 5 6 7 8 9 10
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

M
ag

ne
ti

c 
fl

ux
 d

en
si

ty
 B

 [
T

]

Distance from z-axis [m]

 FS-MCS
 SS-MCS
 Classical optimum

 

(a) Stray field distribution on line a 
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(b) Stray field distribution on line b 

Fig. 9. Stray field distribution of optimal designs (Rt=0.9) 
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