• Title/Summary/Keyword: Sensitivity Axis

Search Result 220, Processing Time 0.026 seconds

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

Aeroelastic testing of a self-supported transmission tower under laboratory simulated tornado-like vortices

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hangan, Horia
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • The current study investigates the dynamic effects in the tornado-structure response of an aeroelastic self-supported lattice transmission tower model tested under laboratory simulated tornado-like vortices. The aeroelastic model is designed for a geometric scale of 1:65 and tested under scaled down tornadoes in the Wind Engineering, Energy and Environment (WindEEE) Research Institute. The simulated tornadoes have a similar length scale of 1:65 compared to the full-scale. An extensive experimental parametric study is conducted by offsetting the stationary tornado center with respect to the aeroelastic model. Such aeroelastic testing of a transmission tower under laboratory tornadoes is not reported in the literature. A multiaxial load cell is mounted underneath the base plate to measure the base shear forces and overturning moments applied to the model in three perpendicular directions. A three-axis accelerometer is mounted at the level of the second cross-arm to measure response accelerations to evaluate the natural frequencies through a free-vibration test. Radial, tangential, and axial velocity components of the tornado wind field are measured using cobra probes. Sensitivity analyses are conducted to assess the variation of the structural dynamic response associated with the location of the tornado relative to the lattice transmission tower. Three different layouts representing the change in the orientation of the tower model relative to the components of the tornado-induced loads are considered. The structural responses of the aeroelastic model in terms of base shear forces, overturning moments, and lateral accelerations are measured. The results are utilized to understand the dynamic response of self-supported transmission towers to the tornado-induced loads.

Development of a Laser Absorption NO/$NO_2$ Measuring System for Gas Turbine Exhaust Jets

  • Zhu, Y.;Yamada, H.;Hayashi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.802-806
    • /
    • 2004
  • For the protection of the local air quality and the global atmosphere, the emissions of trace species including nitric oxides (NO and NO$_2$) from gas turbines are regulated by local governments and by the International Civil Aviation Organization. In-situ measurements of such species are needed not only for the development of advanced low-emission combustion concepts but also for providing emissions data required for the sound assessment of the effects of the emissions on environment. We have been developing a laser absorption system that has a capability of simultaneous determination of NO and NO$_2$concentrations in the exhaust jets from aero gas turbines. A diode laser operating near 1.8 micrometer is used for the detection of NO while a separated visible tunable diode laser operating near 676 nanometers is used for NO$_2$. The sensitivities at elevated temperature conditions were determined for simulated gas mixtures heated up to 500K in a heated cell of a straight 0.5 m optical path. Sensitivity limits estimated as were 30 ppmv-m and 3.7 ppmv-m for NO and NO$_2$, respectively, at a typical exhaust gas temperature of 800K. Experiments using the simulated exhaust flows have proven that $CO_2$ and $H_2O$ vapor - both major combustion products - do not show any interference in the NO or NO$_2$ measurements. The measurement system has been applied to the NO/NO$_2$ measurements in NO and NO$_2$ doped real combustion gas jets issuing from a rectangular nozzle having 0.4 m optical path. The lower detection limits of the system were considerably decreased by using a multipass optical cell. A pair of off-axis parabola mirrors successfully suppressed the beam steering in the combustion gas jets by centralizing the fluctuating beam in sensor area of the detectors.

  • PDF

A Study on the Development of Flight Simulator Training Device for the Prevention of Helicopter Flight Spatial Disorientation (헬리콥터 비행착각 예방을 위한 모의비행훈련장치 개발에 대한 연구)

  • Se-Hoon Yim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.155-161
    • /
    • 2023
  • Vertigo refers to a state in which awareness related to the location, posture, movement, etc. of a helicopter is insufficient in space. It is easy to fall into flight illusion when flying in dense fog or night flight, and even if it has a wide field of view, it can be caused by visual causes such as cloud shapes, wind conditions, conditions of ground objects, and sensory causes such as changes in air posture or gravitational acceleration. The design and program of the motion system are studied that applied a six-axis motion system to a conventional commercial flight simulator program for pilot training, depending on the specificity of helicopter flight training that requires perception and sensitivity. Using the motion-based helicopter simulator produced in this study to train pilots, it is expected to have a positive effect in prevent of vertigo, where high performance could not be confirmed in the previously used visual-based simulation training device.

Laplacian-Regularized Mean Apparent Propagator-MRI in Evaluating Corticospinal Tract Injury in Patients with Brain Glioma

  • Rifeng Jiang;Shaofan Jiang;Shiwei Song;Xiaoqiang Wei;Kaiji Deng;Zhongshuai Zhang;Yunjing Xue
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.759-769
    • /
    • 2021
  • Objective: To evaluate the application of laplacian-regularized mean apparent propagator (MAPL)-MRI to brain glioma-induced corticospinal tract (CST) injury. Materials and Methods: This study included 20 patients with glioma adjacent to the CST pathway who had undergone structural and diffusion MRI. The entire CSTs of the affected and healthy sides were reconstructed, and the peritumoral CSTs were manually segmented. The morphological characteristics of the CST (track number, average length, volume, displacement of the affected CST) were examined and the diffusion parameter values, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), mean squared displacement (MSD), q-space inverse variance (QIV), return-to-origin probability (RTOP), return-to-axis probabilities (RTAP), and return-to-plane probabilities (RTPP) along the entire and peritumoral CSTs, were calculated. The entire and peritumoral CST characteristics of the affected and healthy sides as well as those relative CST characteristics of the patients with motor weakness and normal motor function were compared. Results: The track number, volume, MD, RD, MSD, QIV, RTAP, RTOP, and RTPP of the entire and peritumoral CSTs changed significantly for the affected side, whereas the AD and FA changed significantly only in the peritumoral CST (p < 0.05). In patients with motor weakness, the relative MSD of the entire CST, QIV of the entire and peritumoral CSTs, and the AD, MD, RD of the peritumoral CST were significantly higher, whereas the RTPP of the entire and peritumoral CSTs and the RTOP of the peritumoral CST were significantly lower than those in patients with normal motor function (p < 0.05 for all). In contrast, no significant changes were found in the CST morphological characteristics, FA, or RTAP (p > 0.05 for all). Conclusion: MAPL-MRI is an effective approach for evaluating microstructural changes after CST injury. Its sensitivity may improve when using the peritumoral CST features.

Using an appropriate rotation-based criterion to account for torsional irregularity in reinforced concrete buildings

  • Akshara S P;M Abdul Akbar;T M Madhavan Pillai;Rakesh Pasunuti;Renil Sabhadiya
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.349-361
    • /
    • 2024
  • Excessive torsional behaviour is one of the major reasons for failure of buildings, as inferred from past earthquakes. Numerous seismic codes across the world specify a displacement-based or drift-based criterion for classifying buildings as torsionally irregular. In recent years, quite a few researchers have pointed out some of the inherent deficiencies associated with the current codal guidelines on torsional irregularity. This short communication paper aims to envisage the need for a revision of the displacement-based guidelines on torsional irregularity, and further highlight the appropriateness of a rotation-based criterion. A set of 6 reinforced concrete building models with asymmetric shear walls are analysed using ETABS v18.0.2, by varying the number of stories from 1 to 9, and the torsional irregularity coefficient of various stories is calculated using the displacement-based formula. Since rotation about the vertical axis is a direct indication of the twist experienced by a building, the calculated torsional irregularity coefficients of all stories are compared with the corresponding floor rotations. The conflicting results obtained for the torsional irregularity coefficients are projected through five categories, namely mismatch with floor rotations, inconsistency in trend, lack of clarity in incorporation of negative values, sensitivity to low values of displacement and error conceived in the mathematical formulation. The findings indicate that the irregularity coefficient does not accurately represent the torsional behaviour of buildings in a realistic sense. The Indian seismic code-based values of 1.2 and 1.4, which are used to characterize buildings as torsionally irregular are observed to be highly sensitive to the numerical values of displacements, rather than the actual degree of rotation. The study thus emphasizes the revision of current guidelines based on a more relevant rotation-based or eccentricity-based approach.

Diagnostic Accuracy of Rest T1-201/Stress Tc-99m-MIBI Myocardial SPECT in the Diagnosis of Coronary Artery Disease (휴식 T1-201/부하 Tc-99m MIBI 심근 SPECT의 관상동맥질환 진단 정확성)

  • Yeo, Jeong-Seok;Lee, Dong-Soo;Kang, Keon-Wook;Sohn, Dae-Won;Oh, Byung-Hee;Lee, Myung-Mook;Chung, June-Key;Park, Young-Bae;Lee, Myung-Chul;Seo, Jung-Don;Lee, Young-Woo;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.112-117
    • /
    • 1996
  • Objective: Standard stress/rest Tc-99m MIBI and T1-201 myocardial perfusion study have some limitations such as stress/rest image overlap for Tc-99m-MIBI, low energy for T1-201 and long period of study time for two separate studies. Separate acquisition rest T1-201/stress Tc-99m MIBI dual isotope study is a potentially efficient myocardial perfusion imaging protocol that combines the high resolution of Tc-99m for stress perfusion assessment and T1-201 for viability assessment. This study assessed the usefulness and diagnostic accuracy for this new approach. Methods: We tried to evaluate sensitivity and specificity of dual isotope separate acquisition protocol in 67 patients. Immediately after resting T1-201 SPECT data was acquired, dipyridamole stress Tc-99m MIBI myocardial perfusion study was performed. Visual analysis was carried out qualitatively with 0 to 3 scoring system for 17 segments of left ventricle in the reconstructed horizontal long axis and short axis slices. Results: Total study was completed within 3 hours. In angiographic correlation, dual isotope SPECT demonstrated high sensitivity(85%) and in a small group of patients, high specificity was also observed (100%). Conclusion: Combined thallium-201/stress Tc-99m MIBI SPECT displayed similiar diagnostic accuracy to protocol using stress/rest Tc-99m MIBI SPECT. This protocol was completed in shorter period than the previous protocols and therefore enhance laboratory throughput and patients convenience.

  • PDF

Preliminary Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Park, Chan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.102-102
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions in order to study the cosmic star formation history in local and distant universe. After the Preliminary Design Review, we have fixed major specifications of the NISS. The off-axis optical design with 15cm apertureis optimized to obtain a wide field of view ($2deg.{\times}2deg.$), while minimizing the sensitivity loss. The opto-mechanical structure of the NISS was designed to be safe enough to endure in the launching condition as well as the space environment. The tolerance analysis was performed to cover the wide wavelength range from 0.95 to $3.8{\mu}m$ and to reduce the degradation of optical performance due to thermal variation at the target temperature, 200K. The $1k{\times}1k$ infrared sensor is operated in the dewar at 80K stage. We confirmed that the NISS can be cooled down to below 200K in the nominal orbit through a radiative cooling. Here, we report the preliminary design of the NISS.

  • PDF

Age Differences in Signs and Symptoms of Patients with Temporomandibular Disorders

  • Jo, Jung Hwan;Park, Ji Woon;Kim, Ji Rak;Seo, Hyong Duk;Jang, Ji Hee;Chung, Jin Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.40 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Purpose: The aims of this study were to evaluate the differences in subjective symptoms, clinical characteristics, distribution according to Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) subgroup, psychological profile of TMD patients, and to identify the prevalence and trend according to age. Methods: A total of 1,052 patients (261 men and 791 women; mean age, $34.40{\pm}15.73$ years) who visited the Orofacial Pain Clinic of the Department of Oral Medicine, Seoul National University Dental Hospital complaining of TMD symptoms of were evaluated. All patients were questioned for medical history, clinical symptoms and contributing factors. Clinical examination and patient grouping based on RDC/TMD was conducted. Radiographies were taken. The Korean version of RDC/TMD axis II and Symptom Checklist-90-Revision (SCL-90-R) were administered to evaluate pain-related disability level and psychological status of the patients. Results: Prevalence peaked in the 20-year-old age group. There were more women than men in all groups. The highest T-score among SCL-90-R dimensions was somatization in each group, except for teenagers who showed the highest T-score in interpersonal sensitivity. The 30-year-old age group showed the highest distribution of high disability based on the graded chronic pain scale. Age was positively associated with pain intensity (r=0.100), number of positive muscles on palpation (r=0.137) and negatively associated with maximum mouth opening (r=-0.168). Conclusions: Subjective symptoms and clinical characteristics of TMD patients show distinct tendencies according to different age groups. Treatment should be customized and personalized according to age for efficient symptom resolution and patient satisfaction.

Automatic Left Ventricle Segmentation by Edge Classification and Region Growing on Cardiac MRI (심장 자기공명영상의 에지 분류 및 영역 확장 기법을 통한 자동 좌심실 분할 알고리즘)

  • Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.507-516
    • /
    • 2008
  • Cardiac disease is the leading cause of death in the world. Quantification of cardiac function is performed by manually calculating blood volume and ejection fraction in routine clinical practice, but it requires high computational costs. In this study, an automatic left ventricle (LV) segmentation algorithm using short-axis cine cardiac MRI is presented. We compensate coil sensitivity of magnitude images depending on coil location, classify edge information after extracting edges, and segment LV by applying region-growing segmentation. We design a weighting function for intensity signal and calculate a blood volume of LV considering partial voxel effects. Using cardiac cine SSFP of 38 subjects with Cornell University IRB approval, we compared our algorithm to manual contour tracing and MASS software. Without partial volume effects, we achieved segmentation accuracy of $3.3mL{\pm}5.8$ (standard deviation) and $3.2mL{\pm}4.3$ in diastolic and systolic phases, respectively. With partial volume effects, the accuracy was $19.1mL{\pm}8.8$ and $10.3mL{\pm}6.1$ in diastolic and systolic phases, respectively. Also in ejection fraction, the accuracy was $-1.3%{\pm}2.6$ and $-2.1%{\pm}2.4$ without and with partial volume effects, respectively. Results support that the proposed algorithm is exact and useful for clinical practice.