• Title/Summary/Keyword: Sensitivity Analysis(민감도 해석)

Search Result 822, Processing Time 0.048 seconds

The Optimum Design of Magnet Over Head Crane and the Sensitivity Analysis for Orthogonal Array (마그네트 천장크레인의 최적설계와 직교배열을 이용한 민감도 분석)

  • 노영희;홍도관;최석창;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.786-790
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. The objective function and restricted function were estimated by the orthogonal array, and the sensitivity analysis of design variable fur that was operated.

  • PDF

Sensitivity Analysis of Hydrodynamic Derivatives on Characteristics of Manoeuvring Motion of Manta-type Unmanned Undersea Test Vehicle (Manta형 무인잠수정의 조종운동 특성에 미치는 유체력미계수의 민감도 해석에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.603-609
    • /
    • 2008
  • Manta-type Unmanned Undersea Test Vehicle(MUUTV) is based on the same design concept as Unmanned Undersea Vehicle called Manta Test Vehicle(MTV), which was originally built and operated by the Naval Undersea Warfare Center(Lisiewicz et al., 2000, Sirmalis et al. 2001). The authors carried out the sensitivity analysis of the response of manoeuvring motion of MUUTV to changes in hydrodynamic derivatives, In order to calculate the sensitivity indices of hydrodynamic derivatives on MUUTV, the method by Sen(2000) was adopted Basically the dynamic mathematical model with six degrees of freedom by Feldman(1979) is used but a little revised, refered to Sohn et al.(2006) and some experiment in circulating water channel. Through the present research, some hydrodynamic derivatives of significance are found out, and also the numerical simulation using simplified mathematical model based on result of sensitivity analysis is ascertained to be enough for prediction of manoeuvring characteristics of MUUTV.

Design Sensitivity Analysis of the Second Order Perturbed Eigenproblems for Random Structural System (불확정 구조계 고유치에 관한 이차 민감도 해석)

  • 임오강;이병우
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.115-122
    • /
    • 1994
  • Design sensitivity analysis of the second order perturbed eigenproblems for random structural system is presented. Dynamic response of random system including uncertainties for the design variable is calculated with the first order and second order perturbation method to original governing equation. In optimal design methods, there is fundamental requirement for design gradients. A method for calculating the sensitivity coefficients is developed using the direct differentiation method for the governing equation and first order and second order perturbed equation.

  • PDF

Development of Nonlinear Static Design Sensitivity Analysis Based ANSYS (ANSYS 비선형 정적설계민감도해석 외부모듈 개발)

  • Choi, Byung-Nam;Jung, Jae-Jun;Yoo, Jung-Hoon;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.543-547
    • /
    • 2001
  • CAE has been settled down to an indispensable tool for the simulation of a mechanical system according to the development of computer-aided analysis rapidly. Particularly finite element programs have advanced to the one of most valuable things in the filed of CAE due to the remarkable progress in the implementation. But since this analysis tool mostly provides the result of the analysis, it cannot satisfy designers who are seeking for information to improve their designs. Therefore, design sensitivity analysis or optimization module has been incorporated into commercial FEA programs to satisfy the desire of designers since 1990s. Design sensitivity analysis is to compute the rate of change of response with respected to design variable. Design sensitivity analysis is classfied into static design sensitivity analysis, Eigenvalue design sensitivity analysis and dynamic design sensitivity analysis. In this research, it will be presented to nonlinear static design sensitivity analysis formulation and nonlinear static design sensitivity analysis external module based ANSYS have been developed and illustrated an example to verify the developed module.

  • PDF

Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis (준해석 설계민감도를 위한 변위하중법)

  • Yoo Jung Hun;Kim Heung Seok;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

Fatigue Damage Prediction Using Design Sensitivity Analysis (설계 민감도 해석을 활용한 피로 손상도 예측방법)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Jeon, Hyun-Cheol;Jo, Hyeon-Ho;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2012
  • It was previously suggested the design sensitivity analysis based on transmissibility function to identify the most sensitive response location over a small design modification. On the other hand, energy isoclines were used to predict the fatigue damage with acceleration response only. Both of previous studies commonly tackle the engineering problem using the acceleration response alone such that it may be possible to investigate the relationship between sensitivity analysis and accumulated fatigue damage. In this paper, it is suggested the novel method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with a simple notched specimen and the prediction of fatigue damage is conducted using accelerations measured at different locations. It can be concluded that the accuracy of predicted fatigue damage is proportional to the sensitivity index of the responsible location.

An Efficient Algorithm for Design Sensitivity Analysis of railway Vehicle Systems (철도차량의 설계 민감도 해석을 위한 효율적인 알고리즘 개발)

  • 배대성;조희제;백성호;이관섭;조연옥
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.299-306
    • /
    • 1998
  • Design sensitivity analysis of a mechanical system is an essential tool for design optimization and trade-off studies. This paper presents an efficient algorithm for the design sensitivity analysis of railway vehicle systems, using the direct differentiation method. The cartesian coordinate is employed as the generalized coordinate. The governing equations of the design sensitivity analysis are formulated as the differential equations. Design sensitivity analysis of railway vehicle systems is performed to show the validity and efficiency of the proposed method.

  • PDF

Global Acoustic Design Sensitivity Analysis using Direct BEM and Continuum DSA (직접 경계요소법과 연속계 설계민감도 해석법을 이용한 소음 설계 민감도 해석)

  • 왕세명;이제원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.81-87
    • /
    • 1998
  • In this paper, a global acoustic design sensitivity analysis (DSA) of field point pressure with respect to structural sizing design variables is developed. Firstly acoustic sensitivity is formulated and implemented numerically. And it is combined with continuum structural sensitivity to obtain the global acoustic, design sensitivity. For this procedure, GASA (global acoustic design sensitivity analyzer) has been developed. A half scale of automobile cavity model is considered in this paper. In order to confirm accuracy of the results of global acoustic DSA obtained by GASA, it is compared with the result of central finite difference method. In order to reduce computation time, Rayleigh approximated solution is evaluated and compared with the solution which used every nodal velocities. Also the acoustic optimization procedure is performed using design sensitivities. From these numerical studies, it can be shown that global acoustic DSA is a useful tool to improve acoustic problems.

  • PDF