• Title/Summary/Keyword: Sensitive film

Search Result 395, Processing Time 0.026 seconds

Electrochemistry and Determination of 1-Naphthylacetic Acid Using an Acetylene Black Film Modified Electrode

  • Huang, Wensheng;Qu, Wanyun;Zhu, Dazhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1323-1325
    • /
    • 2008
  • The acetylene black (AB) was dispersed into water in the presence of dihexadecyl hydrogen phosphate (DHP) via ultrasonication, resulting in a stable and well-distributed AB/DHP suspension. After evaporation of water, an AB/DHP composite film-modified electrode was prepared. The electrochemical responses of $K_3$[Fe$(CN)_6$] at the unmodified electrode, DHP film-modified electrode and AB/DHP film-modified electrode were investigated. It is found that the AB/DHP film-modified electrode possesses larger surface area and electron transfer rate constant. Furthermore, the electrochemical behaviors of 1-naphthylacetic acid (NAA) were examined. At the AB/DHP film-modified electrode, the oxidation peak current of NAA remarkably increases. Based on this, a sensitive and convenient electrochemical method was proposed for the determination of NAA. The linear range is in the range from $4.0 {\times} 10^{-8}\;to\;5.0 {\times} 10^{-6}$ mol $L^{-1}$, and the detection limit is $1.0 {\times} 10^{-8}$ mol $L^{-1}$. Finally, this new sensing method was employed to determine NAA in several soil samples.

A Study on Adhesive Properties of Cellulose Triacetate Film by Argon Low Temperature Plasma Treatment (아르곤 저온 플라즈마 처리에 의한 CTA 필름의 접착성 연구)

  • Koo Kang;Park Young Mi
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.28-34
    • /
    • 2004
  • The polarizing film application exploits the unique physicochemical properties between PVA(Poly vinyl alcohol) film and CTA(Cellulose triacetate) film. However, hardly any research was aimed at improving the adhesion characteristics of the CTA film by radio frequency(RF) plasma treatment at argon(Ar) gaseous state. In this report, we deal with surface treatment technology for protective CTA film developed specifically for high adhesion applications. After Ar plasma, surface of the films is analyzed by atomic force microscopy(AFM), roughness parameter and peel strength. Furthermore, the wetting properties of the CTA film were studied by contact angle analysis. Results obtained for CTA films treated with a glow discharge showed that this technique is sensitive to newly created physical functions. The roughness and peel strength value increased with an increase in treatment time for initial treatment, but showed decreasing trend for continuous treatment time. The result of contact angle measurement refer that the hydrophilicity of surface was increased. AFM studies indicated that no considerable change of surface morphology occurred up to 3 minutes of treatment time, but a considerable uneven of surface structure resulted from treating time after 5 minutes.

Comparison to Gases Response Characteristics of Maleate and Itaconate Copolymer LB Films (말레에이트계.이타코네이트계 공중합체 LB막의 가스 반응 특성 비교)

  • 이을식;김도균;최용성;장정수;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.461-464
    • /
    • 1997
  • In this paper, the response characteristics for organic vapors has been studied using both itaconate copolymer and maleate copolymer, which have different hydrophilic group and same hydrophilic group. The conductivity of sensitive LB films was decreased in the range of 18 layers and maintained over 30 layers, which can describe the behaviors of urganic vapors such as penetration and surface absorption. It was thought that the organic vapors was penetrated into sensitive 13 films below 18 layer and the electrode was covered with sensitive LB film over 30 layers.

  • PDF

Super Coupling Dual-gate Ion-Sensitive Field-Effect Transistors

  • Jang, Hyun-June;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.239-239
    • /
    • 2013
  • For more than four decades, ion-sensitive field-effect transistor (ISFET) sensors that respond to the change of surface potential on a membrane have been intensively investigated in the chemical, environmental, and biological spheres, because of their potential, in particular their compatibility with CMOS manufacturing technology. Here, we demonstrate a new type of ISFET with dual-gate (DG) structure fabricated on ultra-thin body (UTB), which highly boosts sensitivity, as well as enhancing chemical stability. The classic ion-sensitive field-effect transistor (ISFET) has been confronted with chronic problems; the Nernstian response, and detection limit with in the Debye length. The super-coupling effects imposed on the ultra thin film serve to not only maximize sensitivity of the DG ISFET, but also to strongly suppress its leakage currents, leading to a better chemical stability. This geometry will allow the ISFET based biosensor platform to continue enhancement into the next decade.

  • PDF

Humidity-Sensitive Properties of Vanadium Oxide Thin Films on Sputtering Conditions (스퍼터링 조건에 따른 바나듐 산화막의 감습 특성)

  • Lee, Seung-Chul;Choi, Bok-Gil;Choi, Chang-Gyu;Kwon, Gwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.448-451
    • /
    • 2004
  • Vanadium oxides have been widely used in a variety of technological applications such electrochromic devices as infrared detectors and are expected as a material suitable for gas sensing applications. Thin films of Vanadium oxide (VOx) have been deposited by r.f magnetron sputtering under different oxygen partial pressure ratios and substrate temperatures. Humidity-sensitive properties of resistive sensors having interdigitated electrode structure are characterized. Our sensors show good response to humidity over 20%RH to 80%RH. Vanadium oxide films deposited with 0% $O_2$ partial pressure at foot exhibit greater sensitivity to humidity change than others.

  • PDF

A Study on the Removal Characteristics of Dissolved Organic and Ammonia Compounds in PFR of Aerated Submerged Bio-film (ASBF) Reactor (PFR 공정의 ASBF 구조에 의한 유기물제거와 질산화의 영향에 대한 연구)

  • Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1265-1271
    • /
    • 2008
  • Aerated submerged bio-film (ASBF) pilot plant has been developed. The presented studies optimized an inexpensive method of enhanced wastewater treatment. The objectives of this research were to describe pilot scale experiments for efficient removal of dissolved organic and nitrogen compounds by using ASBF reactor in plug-flow reactor (PFR) and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophs and autotrophs in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. This direct gas-phase contact should increase the oxygen transfer rate into the bio-film, as well as increase the micro-climate mixing of water, nutrients, and waste products into and out of the bio-film. This research also investigated the efficiency of dissolved organic matter and ammonia nitrogen removals in the ASBF. As it was anticipated, nitrification activity was highest during periods when the flow rate was lower, but it seemed to decline during times when the flow rate was highest. And ammonia nitrogen removal rates were more sensitive than dissolved organic matter removal rates when flow rates exceeded 2.2 L/min.

Sensing and Degradation Properties in the Quartz Crystal Microbalance Coated with the PVC and the Lipid Blended Materials (지질과 PVC의 혼합액을 감응막으로 도포한 수정진동자 가스센서의 센싱 및 열화특성)

  • Jang, Kyung-Uk;Kim, Myung-Ho;Choi, Myung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.44-47
    • /
    • 2000
  • In the recognition of the gases using the quartz crystal microbalance (QCM) coated with the film materials, it is important to obtain the recognition ability of gases, and the stability of film coated above the QCM. Especially, the thickness of film coated above the QCM is decreased according with the using circumstance and time of QCM gas sensor. Therefore, the sensing characteristics of film is changed with these. In this paper, we coated the lipid PC (Phosphatidyl Choline) materials varing with the blended amount of PVC(Poly Vinyl Chloride) and solution (Tetra Hydrofan:THF) above QCM to obtain the sensitive and the stability of lipid PC film. QCM gas sensors coated with film materials were measured the frequency change in the chamber of stationary gas sensing system injected 1-hexane, ethyl acetate, ethanol and benzene of $20{\mu}{\ell}$, respectively. We also measured the degradation characteristics of QCM gas sensor to show the properties of stability.

  • PDF

Highly sensitive CO sensing properties of multilayered $TiO_2$ thin films by colloidal templating

  • Moon, Hi-Gyu;Shim, Young-Seok;Jang, Ho-Won;Kim, Jin-Sang;Park, Hyung-Ho;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.17-17
    • /
    • 2010
  • We investigate CO gas sensing properties of multilayered TiO2 thin film gas sensors fabricated by colloidal templating of 300 nm of polymer spheres. Compared with plain films, the multilayered films show enhanced gas sensing with higher sensitivity and faster response. Also, colloidal templating by using smaller spheres (300 nm in diameter) leads to close-packed multilayered TiO2 thin films with very large-scale. This result suggest that understanding and control of the structures on the sensing properties of multilayered TiO2 thin films by colloidal templating is important in developing the films for real applications.

  • PDF

Degradation Properties in the QCM Gas Sensors Coated with the PEG Materials (PEG 물질을 도포한 QCM 가스센서의 열화특성)

  • Jang, Kyung-Uk;Kim, Myung-Ho;Lee, Won-Jae;Kim, Sang-Keol;Jung, Dong-Hoe;Lee, Joon-Ung;Lee, Ho-Sik;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.218-222
    • /
    • 2002
  • In the recognition of the gases using the quartz crystal microbalance (QCM) coated with the PEG film materials, it is important to obtain the recognition ability of gases, and the stability of PEG film coated above the QCM. Especially, the thickness of PEG film coated above the QCM is decreased according with the using circumstance and time of QCM gas sensor. Therefore, the sensing characteristics of PEG film is changed with these. In this paper, we coated the PEG materials varing with the blended amount of PVC(Poly Vinyl Chloride) and chloroform above QCM to obtain the sensitive and the stability of PEG film. We measured the degradation characteristics of QCM gas sensor in the ethyle acetate 50[%] concentration to show the properties of stability.

  • PDF

The Effects of Functional Monomers on the Synthesis andPhysical Properties of Solution Type Quaternary Polymer Acrylic Pressure-Sensitive Adhesives (관능성 단량체 종류에 따른 4원 용액형 아크릴계 점착제의 합성과 물성에 관한 연구)

  • Kim, Nam-Seok;Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.525-532
    • /
    • 2008
  • To prepare a solution type acrylic pressure-sensitive adhesive, quarter polymers were synthesized from butyl acrylate(BA), 2-ethylhexylacrylate(2-EHA) as a base monomer, methyl methacrylate(MMA) as a comonomer, each of methacrylic acid(MAA), acrylic acid(AA) as a functional monomer. Acrylic solution type pressure-sensitive adhesives(PSA's) of isocyanate derivative crosslinking PSA's were prepared by crosslinking of BEMM, BEMA with toluene-2,4-diisocyanate. The structure of adhesive was identified by FT-IR. The viscosity was measured by using Brookfield DV-III and molecular weight was measured by using gel permeation chromatography. The physical properties of polyethylene film coated with BEMMT, BEMAT were measured as a function of the concentration. As the result, BEMMT(0.6, 0.8), BEMAT(0.6) showed peel adhesion of $160{\sim}180\;g_f$/25 mm width and shear adhesion of more than 24 hours, and tackiness of $4/32{\sim}6/32$ which was relevant to commercial usage.