• Title/Summary/Keyword: Sensing mechanism

Search Result 435, Processing Time 0.034 seconds

An Analysis on Channel Sensing Overhead in IEEE 802.22 Cognitive Radio Networks (IEEE 802.22 인지 라디오 네트워크에서 채널 센싱 오버헤드 분석)

  • Park, Keun-Mo;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.249-253
    • /
    • 2010
  • Resource of wireless frequency bandwidth is gradually going to be deficient due to explosive increase of traffic and saturated non-licensed frequency band such as ISM. In the contrary, many licensed frequency bands are revealed to be low in utilization by several measurement based researches. To alleviate this inefficiency, a concept of cognitive radio is suggested. Cognitive radio lets non-licensed user exploit the licensed frequency band as long as non-licensed user does not interfere licensed user and as a result, it is possible to harness wireless frequency more efficiently. IEEE 802.22 is the first standard network with cognitive radio technology and it employs Two-Stage channel sensing mechanism to accomplish both enough licensed user protection and efficient channel utilization. In this paper, we analyze the overhead of Two-Stage channel sensing mechanism and identify the influence of channel sensing time to the overhead.

Nanopatterning using Machining Force Sensing Module (미세 가공력 검출기구를 이용한 나노패터닝)

  • 방진혁;권기환;박재준;조남규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1109-1112
    • /
    • 2004
  • This paper presents a high sensitive force sensing module to measure machining forces for a tip-based nanopatterning instrument. The force sensing module utilizing a leaf spring mechanism and a capacitive displacement sensor has been designed to provide a measuring range from 80$\mu$N to 8N. This force sensing module is mounted on a PZT driven in-feed motion stage with 1 nm resolution. The sample can be moved by a X-Y scanning motion stage with 5 nm resolution. In the patterning experiments, the machining forces were controlled and monitored by the force sensing module. Then, the patterned sample was measured by AFM. Experimental results demonstrated that the developed force sensing module can be used as an effective sensing device in the nanopatterning operation.

  • PDF

Transaction Signing-based Authentication Scheme for Secure Distributed Spectrum Sensing in Cognitive Radio Networks (인지 라디오 네트워크의 안전한 분산 스펙트럼 센싱을 위한 트랜잭션 서명기법)

  • Kim, Tae Kyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.75-83
    • /
    • 2011
  • Cognitive radio (CR) technology is to maximize the spectrum utilization by allocating the unused spectrums to the unlicensed users. This technology enables the sharing of channels among secondary (unlicensed) and primary (licensed) users on a non-interference basis after sensing the vacant channel and as a result, it is possible to harness wireless frequency more efficiently. To enhance the accuracy of sensing, RDSS was suggested. It is a fusion mechanism based on the reputation of sensing nodes and WSPRT (weighted sequential probability ratio test). However, in RDSS, the execution number of WSPRT could increase according to the order of inputted sensing values, and the fast defense against the forged values is difficult. In this paper, we propose a transaction signing-based authentication scheme for secure distributed spectrum sensing to response the forged values. The validity of proposed scheme is provided by BAN logic.

Development of War-robot using Real-Time Sensing and 4-bar linkage (Real-Time Sensing 및 4-bar linkage를 이용한 격투기로봇 개발)

  • 최은재;박세환;임상헌;정진만;정원지
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.873-876
    • /
    • 2001
  • Micro-robots using microprocessor are mainly classified as line-tracer, micro-mouse, and war-robot. This paper presents the development of the war-robot mechanism with vehicle-style using RC-servo motors and actuators using 4-bar linkage and infrared sensors. Especially the algorithm of conquering other war-robots is proposed based on the skill of belly-throw of Korean wrestling.

  • PDF

Repeated Overlapping Coalition Game Model for Mobile Crowd Sensing Mechanism

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3413-3430
    • /
    • 2017
  • With the fast increasing popularity of mobile services, ubiquitous mobile devices with enhanced sensing capabilities collect and share local information towards a common goal. The recent Mobile Crowd Sensing (MCS) paradigm enables a broad range of mobile applications and undoubtedly revolutionizes many sectors of our life. A critical challenge for the MCS paradigm is to induce mobile devices to be workers providing sensing services. In this study, we examine the problem of sensing task assignment to maximize the overall performance in MCS system while ensuring reciprocal advantages among mobile devices. Based on the overlapping coalition game model, we propose a novel workload determination scheme for each individual device. The proposed scheme can effectively decompose the complex optimization problem and obtains an effective solution using the interactive learning process. Finally, we have conducted extensive simulations, and the results demonstrate that the proposed scheme achieves a fair tradeoff solution between the MCS performance and the profit of individual devices.

Recent Advances and Trends in Filters for Highly Selective Metal Oxide Gas Sensors (산화물 반도체형 가스센서의 선택성 향상을 위한 필터 연구 동향 및 전략)

  • Seong-Yong Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • Metal-oxide-based semiconductor gas sensors are widely used because of their advantages, such as high response and simple sensing mechanism. Recently, with the rapid progress in sensor networks, computing power, and microsystem technology, sensor applications are expanding to various fields, such as food quality control, environmental monitoring, healthcare, and artificial olfaction. Therefore, the development of highly selective gas sensors is crucial for practical applications. This article reviews the developments in novel sensor design consisting of sensing films and physical and chemical filters for highly selective gas sensing. Unlike conventional sensors, the sensor structures with filters can separate the sensing and catalytic reactions into independent processes, enabling selective and sensitive gas sensing. The main objectives of this study are directed at introducing the role of various filters in gas-sensing reactions and promising sensor applications. The highly selective gas sensors combined with a functional filter can open new pathways toward the advancement of high-performance gas sensors and electronic noses.

THE PERFOMANCE OF GROUNDBASE MOBILE PLATFORM FOR C-BAND MICROWAVE SCATTEROMETER SYSTEM

  • Aziz H.;Mahmood N.N.;Ali A.;Jamil H.;Mahmood K.A.;Ahmad Z.;Ibrahim N.;Brevern P.V.;Chuah H.T.;Koo V.C.;Sing L.X.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.61-63
    • /
    • 2004
  • The procurement of a mobile microwave scatterometer platform involved the consideration to ensure a mobile platform and equipment selected full-filled technical requirement and safety standard in Malaysia. Designing, and modification works involved engineering methodology in determining and selecting a suitable hydraulic telescopic boom that suit a selected mobile platform available locally. The mobile platform is a delivery system for microwave remote sensing microwave scatterometer and other accessories to any locations in Malaysia. Total loading to be carried by the mobile platform is 4500 kg and its overall weight must be 16,000 kg as recommended by hydraulic telescopic boom manufacturers. The telescopic boom will elevate microwave scatterometer system including the antenna to a maximum height of 27 m, and can also be rotated through $3600^{\circ}$. A mechanism is incorporated in the system to enable tracking or monitoring angular movement of the hydraulic telescopic boom when positioned towards predetermined target.

  • PDF

THE MECHANICAL DESIGN AND CONSTRUCTION OF A TRUCK MOUNTED SCATTEROMETER SYSTEM

  • Aziz, H.;Mahmood, N.N.;Ali, A.;Ibrahim, N.;Ahmad, Z.;Mahmood, K.A.;Jamil, H.;Brevern, P.V.;Koo, V.C.;Sing, L.K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1009-1011
    • /
    • 2003
  • The procurement of mobile microwave scatterometer involve the consideration to ensure vehicle and equipment selection full-filled technical requirement and safety standard in Malaysia. Designing, and modification works involve engineering methodology in determining and selecting a suitable hydraulic telescopic boom that suit a selected vehicle available from the market. The vehicle is also a delivery system for microwave remote sensing equipment and other accessories to any locations in Malaysia. Total loading to be carried by the vehicle is about 4500 kg and its overall weight must be 16,000 kg as recommended by hydraulic telescopic boom manufacturers. The telescopic boom will elevate microwave scatterometer system and antenna to a maximum height of 27 m, and can also be rotated through 360$^{\circ}$. A mechanism is incorporated in the system to enable tracking or monitoring angular movement of the hydraulic telescopic boom when positioned towards required target.

  • PDF

A Receiver-Driven Loss Recovery Mechanism for Video Dissemination over Information-Centric VANET

  • Han, Longzhe;Bao, Xuecai;Wang, Wenfeng;Feng, Xiangsheng;Liu, Zuhan;Tan, Wenqun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3465-3479
    • /
    • 2017
  • Information-Centric Vehicular Ad Hoc Network (IC-VANET) is a promising network architecture for the future intelligent transport system. Video streaming applications over IC-VANET not only enrich infotainment services, but also provide the drivers and pedestrians real-time visual information to make proper decisions. However, due to the characteristics of wireless link and frequent change of the network topology, the packet loss seriously affects the quality of video streaming applications. In this paper, we propose a REceiver-Driven loss reCOvery Mechanism (REDCOM) to enhance video dissemination over IC-VANET. A Markov chain based estimation model is introduced to capture the real-time network condition. Based on the estimation result, the proposed REDCOM recovers the lost packets by requesting additional forward error correction packets. The REDCOM follows the receiver-driven model of IC-VANET and does not require the infrastructure support to efficiently overcome packet losses. Experimental results demonstrate that the proposed REDCOM improves video quality under various network conditions.

Studies on the Sensing Mechanism of Conducting Polymer for Volatile Organic Compound Sensing (휘발성 유기화합물 측정을 위한 전도성고분자 센서의 감응기구에 관한 연구)

  • Hwang, Ha-Ryong;Baek, Ji-Heum;Heo, Jeung-Su;Lee, Deok-Dong;Im, Jeong-Ok;Lee, Jun-Yeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.599-602
    • /
    • 2001
  • In this study, we fabricated chemically polymerized PPy and PANi films with different selectivity by controlling dedoping time. And the sensing properties and mechanism of VOCs adsorption to conducting polymers were investigated. Thin sensor had higher sensitivity compared to thick one, and dedoped sensor for 1-minute highest sensitivity. Upon gas absorption, polypyrrole exhibited positive sensitivity while polyaniline had negative sensitivity. PPy film show hydrophilic property and PANi film show hydrophobic property. After the gas absorption, the sensitivity increased as a function of polarity of absorbed molecules. These behaviors are due to the polar molecules absorbed with the movable polaron or free carrier, and then it interrupt or generate the movement of polaron and carrier, and then it changes the conductivity of polymer. We found that conducting polymer sensors are very sensitive to the difference in polarity of gas molecules.

  • PDF