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Abstract 

With the fast increasing popularity of mobile services, ubiquitous mobile devices with 
enhanced sensing capabilities collect and share local information towards a common goal. 
The recent Mobile Crowd Sensing (MCS) paradigm enables a broad range of mobile 
applications and undoubtedly revolutionizes many sectors of our life. A critical challenge for 
the MCS paradigm is to induce mobile devices to be workers providing sensing services. In 
this study, we examine the problem of sensing task assignment to maximize the overall 
performance in MCS system while ensuring reciprocal advantages among mobile devices. 
Based on the overlapping coalition game model, we propose a novel workload determination 
scheme for each individual device. The proposed scheme can effectively decompose the 
complex optimization problem and obtains an effective solution using the interactive 
learning process. Finally, we have conducted extensive simulations, and the results 
demonstrate that the proposed scheme achieves a fair tradeoff solution between the MCS 
performance and the profit of individual devices.  
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1. Introduction 
 

With the development of Internet of Things (IoT) and embedded technology, the remote 
intelligent monitoring system will be applied in more comprehensive scopes. Therefore, 
ubiquity of internet-connected portable devices is enabling a new class of applications to 
perform sensing tasks in the real world. Among mobile devices, smartphones have evolved 
as key electronic devices for communications, computing, and entertainment, and have 
become an important part of people’s daily lives. Most of current mobile phones are 
equipped with a rich set of embedded sensors, which can also be connected to a mobile 
phone via its Bluetooth interface. These sensors can enable attractive sensing applications in 
various domains such as environmental monitoring, social network, healthcare, 
transportation, and safety [1]-[4]. 

 
Mobile Crowd Sensing (MCS) refers to the technology that uses mobile devices, i.e., 

smartphones, to collect and analyze the information of people and surrounding environments 
[2]. Based on this information, we can analyze statistical characteristics of group behaviors, 
reveal hidden information of social activity patterns, and finally provide useful information 
and services to end users. By involving anyone in the process of sensing, MCS greatly 
extends the service of IoT and builds a new generation of intelligent networks that 
interconnect things-things, things-people and people-people. Therefore, to provide a new 
way of perceiving the world, MCS has a wide range of potential applications [2]. 

 
To effectively operate the MCS system, we collect sensing data from multiple smartphones 

to maximize the utility of sensed information; different smartphones are intrinsically 
different in terms of the quality of their embedded sensors. Generally, it is desirable to obtain 
more sensing data from high quality sensors. However, performing a sensing task consumes 
precious resources on smartphones, such as energy, computing, and cellular bandwidth. 
Therefore, one of the central problems for the MCS system is the allocation of sensing-
workload among smartphones in order to support various applications. It has a great impact 
on the overall MCS system performance [5]-[6]. 
 
In the early research of MCS system, smartphones are assumed as volunteers for the MCS 

system. However, in practice, smartphone users are always selfish individuals that will not 
contribute their resources without getting paid. Therefore, the traditional volunteer models 
may not be suitable for the real-world MCS operation [6]. This situation can be seen a game 
theory problem. Game theory is a decision-making process between independent decision-
making players as they attempt to reach a joint decision that is acceptable to all participants. 
In general, players consistently pursue their own objectives and try to maximize the expected 
value of their own payoffs, which is measured in some utility scale. In the traditional game 
theory, a solution concept is a rule that defines what it means for a decision vector to be 
acceptable to all players in the light of the conflict/cooperation environment [7]. 
 
Coalitional games are very influential game models for the multi-agent system research 

community due to their ability to capture the cooperative behaviors among agents [8]. With 
respect to this activity, there are many approaches that try to generate the optimal coalition 
structure which maximizes the payoffs of all agents. However, these approaches are all based 
on the assumption that each agent must belong to one coalition. This means that even if an 
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agent has excessive resources to participate other coalitions, it is still not allowed to take 
advantages of the remaining resources [8]. In 2010, Chalkiadakis et al. introduced the new 
concept of Overlapping Coalition Formation (OCF) game [9]. In OCF games, individual 
agents can cooperate with each other to form coalitions, and the coalitions can be 
overlapping. 

 
Typically, smartphones consume their own resources to accomplish the sensing task. 

Therefore, the MCS system should purchase sensing services from smartphones to 
compensate their resource consumptions. Without compensation of a plenty of smartphones, 
the MCS system is not able to collect enough information to accomplish its task. In this 
study, we focus on the multi-workload allocation problem among smartphones. To attract 
sufficient participations, paying price influences the willingness of smartphones to serve. 
However, it is not easy to characterize behaviors of smartphone users who may decide their 
actions to serve. In particular, as the number of smartphones can be huge, it is difficult to 
apply conventional optimization methods. They pose a heavy computation burden and 
implementation overheads.  
 
Motivated by the above discussion, we propose a new MCS control scheme based on the 

repeated OCF game model. To develop a novel multi-workload allocation algorithm, we 
decomposes the complex optimization problem into several sub-problems, and each sub-
problem is solved through an interactive procedure imitating the negotiation process. It is 
practical and suitable for real implementation. Based on the iterative feedback mechanism, 
the proposed scheme dynamically adjusts the price for each sensing task, and smartphone 
users individually respond to such price setting in order to optimize their payoffs. Under the 
real-world MCS environments, the central server and smartphone users are mutually 
dependent on each other to maximize their profits while flexibly adapting the current system 
situations. 

 
The major contributions of our proposed scheme are: i) the adjustable dynamics 

considering the current MCS system environments, ii) the ability to maximize the total 
system performance by incorporating the OCF game methodology, iii) the ability to achieve 
the socially balanced outcome while ensuring individual rationality, and iv) practical 
approach to effectively reach a desirable solution. Especially, the important novelties of our 
proposed scheme are obtained from the key principles of practical game approach. To the 
best of our knowledge, relatively little research has been done on this issue over the years. 
 
The rest of this paper is organized as follows. In Section II, we review the related work. In 

Section III, we familiarize the reader with the basics of OCF game model, and explain in 
detail the developed MCS scheme based on the feedback based iterative OCF game. We 
present experimental results in Section IV and compare the performance to other existing 
schemes [5],[6],[10]. Finally, we give our conclusion and future work in Section V. 
 
 

2. Related Work 
 
Over the years, a lot of state-of-the-art research work on the MCS system operation has 

been conducted. Some MCS schemes [11]-[12] were developed based on the Stackelberg 
game model. The scheme in [11] proposed two types of incentive mechanisms for the MCS 
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system in the perspectives of the agent platform and mobile users, respectively. First, the 
platform centric mechanism was assumed that the agent platform had the absolute control 
over the total payment to users who can only adjust their strategies to comply. Second, the 
user-centric incentive mechanism utilized an auction-based algorithm and owned benefits 
such as truthfulness [11]. The scheme in [12] classified the MCS system into two classes: 
data acquisition and distributed computing. The data acquisition served the purpose of 
collecting data for building up a database, and the distributed computing utilized 
computation power to solve problem that could be expensive for a single device. In addition, 
the contract theory was applied in the distributed computing scenario where the complete 
information and incomplete information settings were considered [12]. Even though the 
Stackelberg game based MCS schemes have merits, they needed the platform to know the 
information of users in advance, which was too strong in the practical system.  
 
The scheme in [13] proposed an online incentive mechanism for the scenario where 

workers arrived one by one, which was in contrast to some mechanisms assuming all of 
workers reported their profiles to the agent platform in advance. In this scheme, the MCS 
mechanism was modeled as an online auction process, where mobile users submitted their 
private information to the platform over time and a subset of users were selected before a 
specified deadline. To shorten the crowd response time, the scheme in [14] recruited workers 
in advance and held idle for a small amount of expense called retainer. The reserved workers 
would respond quickly when tasks were assigned. Based on the retainer model, the scheme 
in [14] proposed a combinatorial allocation and pricing mechanism for crowdsourcing tasks 
with time constraints. The schemes in [13]-[14] were also developed to obtain an efficient 
solution for the MCS system operations. However, they did not consider the reliability of the 
submitted data. Therefore, they provided lower efficiency of funding utilization. The 
volunteer’s dilemma is an N-person public good game in which a public good is produced if 
and only if at least one player volunteers to pay a cost. The basic model of volunteer’s 
dilemma can be applied to many cases in the social sciences; it also can be applied to the 
design of MCS control schemes [7],[15]-[16]. 
 
The Load Balanced Mobile Crowd Sensing (LBMCS) scheme in [5] considered two 

important objectives, i) load balancing, and ii) sensing data utility maximization. However, 
there is an intrinsic tradeoff between load balance and utility maximization. To strike a good 
balance between these conflicting objectives, the LBMCS scheme was designed as a Nash 
bargaining game model. According to the bargaining process, this scheme can achieve a fair 
tradeoff between workload balance and data utility maximization in a distributed manner [5].  
 
The Energy Aware Mobile Crowd Sensing (EAMCS) scheme in [10] was a new participant 

sampling behavior model to quantify and explicitly build up the relationship between their 
remaining energy level and the willingness for participation. In particular, this scheme 
introduced a new concept of ‘QoI satisfaction ratio’ to quantify the degree of how collected 
sensory data can satisfy multi-dimensional QoI requirements of tasks in terms of data 
granularity and quantity. Based on this mechanism, the EAMCS scheme calculated the 
rejection probability that represented the chance of a participant to reject the sensing task if 
the recommended number of data samples from the server cloud exceeded its sensing 
capabilities [10]. 
 
The Overlapping Coalition Game based Collaborative Sensing (OCGCS) scheme in [6] 
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was developed as an incentive mechanism in which the users can get satisfying rewards from 
the platform by efficiently allocating their resources to achieve a relatively high social 
welfare. Specifically, to solve the resource allocation problem in the incentive mechanism, 
this scheme considered a cooperative game model with overlapping coalitions, in which the 
smartphone users can self-organize into the overlapping coalitions for different sensing tasks. 
Finally, the OCGCS scheme proposed a distributed algorithm that converges to a stable 
outcome in which no user had the motivation to change its current resource allocation so as 
to increase its individual payoff [6]. 
 
All the earlier work in [5]-[6],[10] has attracted a lot of attention and introduced unique 

challenges to efficiently handle the MCS system. However, there are several disadvantages. 
First, these existing schemes rely on the impractical assumption for real MCS operations. 
Control algorithms based on the inapplicable presumption can cause potential erroneous 
decisions. Second, these schemes cause the extra control overhead, which exhausts the 
system resources and needs intractable computation. Third, these schemes operate the MCS 
system by some fixed system parameters. Under dynamic system environments, it is an 
inappropriate approach to operate real world network MCS systems. In this study, we 
demonstrate that our proposed scheme significantly outperform these schemes in [5]-[6],[10] 
through extensive simulation and the analysis is given in Section IV.  
 
 

3. Overlapping Coalition based MCS Algorithm 
 
In this section, we present our OCF game model, which employs an interactive feedback 

approach. And then, we explain in detail about the proposed MCS algorithm through the 
OCF concept. Finally, the proposed scheme is described strategically in the eight-step 
procedures.  
 
A. Overlapping Coalition Formation Game Model  
 
To model cooperative games with overlapping coalitions, it is assumed that players possess 

a certain amount of resources which they can distribute among the coalitions they join. If 
overlapping coalitions are allowed, players selectively participate some coalitions, and 
players’ contribution to a coalition is given by the fraction of their resources that they 
allocate to it. In the traditional non-overlapping coalition formation game, a coalition is a 
subset of players, and a game is defined by its characteristic function 𝑣𝑣 ∶  2𝑁𝑁 → ℝ with 
player set 𝑵𝑵 = {1, … ,𝑛𝑛}, representing the maximum total payoff that a coalition can get [9].  

 
In the OCF game, a coalition k is given by a vector 𝒓𝒓𝑘𝑘 = �𝑟𝑟1𝑘𝑘 , … , 𝑟𝑟𝑛𝑛𝑘𝑘�, where 𝑟𝑟𝑖𝑖𝑘𝑘 is the 

fraction of agent 𝑖𝑖’s resources contributed to the coalition k; 𝑟𝑟𝑖𝑖𝑘𝑘 = 0 means that the player 
𝑖𝑖 is not a member of the coalition k. The support of coalition k, denoted by supp(𝒓𝒓𝑘𝑘), is 
given by supp�𝒓𝒓𝑘𝑘� =  �𝑖𝑖 ∈ 𝑁𝑁 | 𝑟𝑟𝑖𝑖𝑘𝑘 ≠ 0� . The OCF game is given by a characteristic 
function 𝑣𝑣(𝑘𝑘): �0, 𝑟𝑟𝑖𝑖,1≤𝑖𝑖≤𝑛𝑛𝑘𝑘  �

𝑛𝑛 → 𝔑𝔑 , where 𝑣𝑣(0𝑛𝑛) = 0  and 𝔑𝔑  represents the set of real 
numbers. Function 𝑣𝑣(𝑘𝑘)  is monotone, and maps each contribution  𝑟𝑟𝑖𝑖𝑘𝑘  in 𝒓𝒓𝑘𝑘  to the 
corresponding payoff [9]. 
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In this study, we develop a new OCF game model (𝔾𝔾) for MCS system. To model strategic 
MCS situations involving interactive process, we assume that players seek to choose their 
strategy based on the reciprocal relationship. In our game model, each coalition represents 
individual sensing task in the MCS system. 
 
Definition 1. Our OCF game model constitutes a 8-tuple 𝔾𝔾 = (𝑵𝑵 ∪ {0},𝑚𝑚, 𝒓𝒓(·),𝑣𝑣(·), 
𝓣𝓣,  𝔸𝔸, 𝑺𝑺𝑖𝑖,1≤𝑖𝑖≤𝑛𝑛, 𝑼𝑼𝑖𝑖,1≤𝑖𝑖≤𝑛𝑛), where  

(i)  𝑵𝑵 ∪ {0} is a set of game players; 𝑵𝑵 = {1, … ,𝑛𝑛} is the set of smartphone users and 0 
represents the central server of MCS system,                       

(ii) 𝑚𝑚, i.e., 1≤ 𝑘𝑘 ≤ 𝑚𝑚, is the number of sensing tasks in our MCS system,  
(iii) 𝒓𝒓(·) is a vector to represent the contributed resources from players in 𝑵𝑵, 
(iv) 𝑣𝑣(·) represents a satisfaction level of each task. It is a monotone function to evaluate 

each task payoff. Therefore, 𝑣𝑣 function satisfies 𝑣𝑣�𝒓𝒓𝑘𝑘� ≥ 𝑣𝑣�𝒓𝒓′𝑘𝑘� for any 𝒓𝒓𝑘𝑘, 𝒓𝒓′𝑘𝑘 
such that 𝑟𝑟𝑖𝑖𝑘𝑘 ≥ 𝑟𝑟𝑖𝑖′𝑘𝑘 for all 𝑖𝑖 ∈ 𝑵𝑵.  

(v)  𝓣𝓣 = {𝔗𝔗1, … ,𝔗𝔗𝑘𝑘, … ,𝔗𝔗𝑚𝑚} is a set of each task’s thresholds, 𝔗𝔗 > 0. If 𝒓𝒓𝑘𝑘  < 𝔗𝔗𝑘𝑘 , 
𝑣𝑣�𝒓𝒓𝑘𝑘� = 0. This means that players must allocate resource at least the 𝔗𝔗𝑘𝑘 amount to 
complete the task 𝑘𝑘, 

(vi)  𝔸𝔸 = {𝒜𝒜1, … ,𝒜𝒜𝑖𝑖, … ,𝒜𝒜𝑛𝑛}  is a set of available resources for players in 𝑵𝑵 . 𝒜𝒜𝑖𝑖 
represents the total resource amount of the player 𝑖𝑖 ∈ 𝑵𝑵. For the sake of simplicity, 
we assume one type of resource, e.g., sensing capacity, that is needed for all tasks, 

(vii)  𝑺𝑺𝑖𝑖 = �𝑠𝑠𝑖𝑖1, … , 𝑠𝑠𝑖𝑖𝑘𝑘 , … , 𝑠𝑠𝑖𝑖𝑚𝑚� is a nonempty finite set of all pure strategies of the player 
𝑖𝑖 ∈ 𝑵𝑵 ∪ {0}. In particular, if 𝑖𝑖 = 0, 𝑠𝑠𝑖𝑖𝑘𝑘 represents the central server’s price strategy 
for the task k. Otherwise, if 𝑖𝑖 ∈ 𝑵𝑵, 𝑠𝑠𝑖𝑖𝑘𝑘 represents the smartphone i’s contribution to 
the task k. 

(viii) 𝑼𝑼𝑖𝑖 = �𝑢𝑢𝑖𝑖1, … ,𝑢𝑢𝑖𝑖𝑘𝑘 , … ,𝑢𝑢𝑖𝑖𝑚𝑚� is the utility set of the player 𝑖𝑖 ∈ 𝑵𝑵 ∪ {0}. Therefore, 𝑢𝑢𝑖𝑖𝑘𝑘 
represents the player i’s payoff for the task k. If 𝑖𝑖 = 0, 𝑼𝑼0 represents a satisfaction 
level of the central server: (𝑠𝑠01 × 𝑠𝑠02 ×∙∙∙× 𝑠𝑠0𝑚𝑚) → 𝑼𝑼0 = ∑ 𝑣𝑣�𝒓𝒓𝑘𝑘�𝑚𝑚

𝑘𝑘=1 . Otherwise, if 
𝑖𝑖 ∈ 𝑵𝑵, 𝑼𝑼𝑖𝑖 represents a satisfaction level of player i, and it is decided according to the 
set of player i’s strategies : (𝑠𝑠𝑖𝑖1 × 𝑠𝑠𝑖𝑖2 ×∙∙∙× 𝑠𝑠𝑖𝑖𝑚𝑚) → 𝑼𝑼𝑖𝑖 = ∑ 𝑢𝑢𝑖𝑖𝑘𝑘𝑚𝑚

𝑘𝑘=1 .  
 

 
In this study, our OCF game model describes a scenario where players can split their 

resources to work different 𝑚𝑚 tasks. Each task has its own resource requirement 𝔗𝔗 and a 
utility function 𝑣𝑣(·). If the supp�𝒓𝒓𝑘𝑘�, which is the total sum of contribution resources from  
players that work on the task k, is higher than the 𝔗𝔗𝑘𝑘, the task k has sufficient resources to 
be completed, and the central server can obtain the outcome of 𝑣𝑣�𝒓𝒓𝑘𝑘�. Otherwise, the payoff 
from the task k is 0. Without loss of generality, we assume that each player chooses 
independently to work on each individual task while not preventing another players from 
choosing any tasks as well. For real-world MCS operations, this assumption is generally 
holds. 
 
B. Interactive Mobile Crowd Sensing Algorithm 
 
In this study, we assume a formal model for the MCS system. We consider a multitask-

oriented central server, and 𝑛𝑛 smartphone users randomly spread over the MCS region. 
Each smartphone is embedded with various sensors, and different sensing-works are 
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assumed to be independent of each other, both temporarily and spatially. The central server 
publicizes 𝑚𝑚 sensing tasks, and gathers the sensing information from the sensory data 
contributors, i.e., smartphones, in the MCS region. The total sensing resource of each 
smartphone is limited to 𝒜𝒜, and smartphone users can distribute their resources freely 
among 𝑚𝑚 tasks. Each task is associated with a set of thresholds (𝓣𝓣). Therefore, for each 
task completion, smartphone users need to upload at least the minimum amount 𝔗𝔗 from 
their devices.  
 
To evaluate each task’s sensing performance, the central server has its own utility function, 

which is a function of the participating smartphones and their corresponding contributions. 
To recruit smartphones for collecting sensory data, a proper payment mechanism should be 
employed to model the interactions between smartphone users and the central server. By 
using the reciprocal relationship between benefit and cost, the central server’s payoff 
corresponds to the received outcome minus the incurred cost. In the central server, the utility 
function for the task k is defined as follows; 
 

𝑼𝑼0�𝒔𝒔0
𝑘𝑘,1≤𝑘𝑘≤𝑚𝑚� = �𝑣𝑣�𝒓𝒓𝑘𝑘�

𝑚𝑚

𝑘𝑘=1

= ��𝜁𝜁𝑘𝑘 − 𝒞𝒞0�𝒓𝒓𝑘𝑘��
𝑚𝑚

𝑘𝑘=1

                 (1) 

s. t. , 𝒓𝒓𝑘𝑘 = ∑ 𝑟𝑟𝑙𝑙𝑘𝑘𝑛𝑛
𝑙𝑙=1  and  𝒞𝒞0�𝒓𝒓𝑘𝑘� = 𝒫𝒫𝑘𝑘 × 𝒓𝒓𝑘𝑘                                   

 
where 𝒫𝒫𝑘𝑘 and 𝜁𝜁𝑘𝑘 are the unit_price for resource and the obtained outcome from the task 𝑘𝑘 
completion, respectively. If 𝒓𝒓𝑘𝑘 <  𝔗𝔗𝑘𝑘, the 𝜁𝜁𝑘𝑘value is 0. According to the equation (1), the 
𝑼𝑼0(·) function has a nice interpretation: the net gain of central server’s utility decreases 
proportionately by the sensing payment. In contrast to the central server, the net gain of 
smartphones increases proportionately by the sensing payment. Therefore, the individual 
utility function for the player 𝑖𝑖 ∈ 𝑵𝑵 (𝑼𝑼𝑖𝑖(𝑺𝑺𝑖𝑖)) is defined as follows; 

 

𝑼𝑼𝑖𝑖(𝑺𝑺𝑖𝑖) = �𝑢𝑢𝑖𝑖𝑘𝑘
𝑚𝑚

𝑘𝑘=1

= �

⎝

⎜⎜
⎛

⎩
⎪
⎨

⎪
⎧

𝒫𝒫𝑘𝑘

1 + exp �−𝜁𝜁𝑘𝑘 × 𝑠𝑠𝑖𝑖𝑘𝑘
𝒜𝒜𝑖𝑖
�
⎭
⎪
⎬

⎪
⎫
− 𝒞𝒞𝑖𝑖�𝑘𝑘, 𝑠𝑠𝑖𝑖𝑘𝑘�

⎠

⎟⎟
⎞𝑚𝑚

𝑘𝑘=1

        (2) 

s. t. ,𝒞𝒞𝑖𝑖�𝑘𝑘, 𝑠𝑠𝑖𝑖𝑘𝑘� = 𝜂𝜂𝑖𝑖𝑘𝑘 × �exp�
𝑠𝑠𝑖𝑖𝑘𝑘

𝒜𝒜𝑖𝑖
� − 1�  and �𝑠𝑠𝑖𝑖𝑘𝑘

𝑚𝑚

𝑘𝑘=1

 ≤ 𝒜𝒜𝑖𝑖    

 
where 𝒞𝒞𝑖𝑖�𝑘𝑘, 𝑠𝑠𝑖𝑖𝑘𝑘� and 𝜂𝜂𝑖𝑖𝑘𝑘 are the player 𝑖𝑖’s cost function with the strategy 𝑠𝑠𝑖𝑖𝑘𝑘, and a cost 
control parameter for the task 𝑘𝑘, respectively. Traditionally, the exponential function is 
widely used in literature to model the consuming cost with assigned resource [7].  
 
The goal of each player in 𝑵𝑵 is to maximize all their profits; they select their strategies 

from a selfish motive. If some tasks need high costs for sensing works, players in 𝑵𝑵 do not 
contribute their resources for these non-profitable tasks, and these tasks can not be 
completed. At this time, all players pay a penalty cost (𝔉𝔉(·)), which is a great damage for 
players in 𝑵𝑵. Therefore, each individual player prefers that all tasks are completed, but also, 
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they prefer that other players contribute their resources to non-profitable tasks. Due to this 
reason, each player faces the decision of either making a small sacrifice from which all will 
benefit, or freeriding.  

 
Usually, social dilemmas are situations in which the optimal decision of an individual 

contrasts with the optimal decision for the group. In game theory, this usually means games 
in which a dominant strategy leads to a Pareto inefficient equilibrium; the prisoner’s 
dilemma is probably the most famous example [15]. In 1985, M. Diekmann first proposed 
the volunteer’s dilemma game in the social sciences [16]. In this game, each individual 
player prefers to avoid the cost of volunteering and exploit the benefit of the public good, but 
someone must volunteer and pay the cost of producing the good; if nobody volunteers, the 
cost paid is greater than the cost of volunteering [16]. 
 
In the traditional volunteer’s dilemma game, a public good is produced if and only if at 

least one player volunteers to pay a cost. The basic model of N-person volunteer’s dilemma 
is the following: each of N individuals can choose to volunteer (Volunteer) or not (Ignore). 
A public good is produced if and only if at least one individual volunteers [15]. Volunteering 
has a cost c > 0. Therefore, the individuals that volunteer have a payoff 1 - c and the ones 
that do not have a payoff 1. If nobody volunteers, the public good is not produced; 
everybody pays a cost a > c (i.e., payoff 1 - a). The fitness of the pure strategy Volunteer 
(𝑊𝑊𝑉𝑉) is 𝑊𝑊𝑉𝑉 = 1 − 𝑐𝑐 and the fitness of the pure strategy Ignore (𝑊𝑊𝐼𝐼) is 𝑊𝑊I = �𝛾𝛾𝑁𝑁−1 ×
(1 − 𝑎𝑎)� + (1 − 𝛾𝛾𝑁𝑁−1) where 𝛾𝛾  is the probability of ignoring (not volunteering). The 
fitness of the mixed strategy is 𝑊𝑊𝑚𝑚𝑖𝑖𝑚𝑚 = (𝛾𝛾 ×𝑊𝑊I) + ((1 − 𝛾𝛾) × 𝑊𝑊𝑉𝑉). The mixed-strategy 
equilibrium (𝛾𝛾eq) can be found by equating the fitness of the two pure strategies; 𝛾𝛾eq =
(𝑐𝑐 𝑎𝑎⁄ )1/(𝑁𝑁−1). The volunteer’s dilemma can be applied to many cases in the social sciences 
[15]. 

 
For effective MCS operations, the proposed scheme applies the concept of volunteer’s 

dilemma to our OCF game model. When the amount of contribution for a specific task is less 
than its corresponding threshold, players make two decisions; i) whether to contribute their 
resources or not, ii) if they contribute, how much resource would be contributed. Under 
dynamically changing MCS environments, these decisions should be made to effectively 
adapt to the current MCS condition. In order to adaptively implement this decision process, 
players can learn how to perform well by interacting with other players and dynamically 
adjust their decisions.  

 
To decide adaptively above two questions, we present a novel dynamic learning approach. 

While time is ticking away, players obtain their payoffs (𝑼𝑼𝑖𝑖(·)) as a consequence of their 
decisions. Based on this information, each player individually decides his strategy selection 
probability. If the task 𝑘𝑘 has failed to be completed, the central server announces this 
situation. At this time, the player 𝑖𝑖 in 𝑵𝑵 selects his strategy (𝑠𝑠𝑖𝑖𝑘𝑘); 𝑠𝑠𝑖𝑖𝑘𝑘 can be defined as 
multiple amount levels of contributing resource, i.e., 𝑠𝑠𝑖𝑖𝑘𝑘 = {𝑠𝑠𝑖𝑖

𝑘𝑘(0), … 𝑠𝑠𝑖𝑖
𝑘𝑘(α)} where 𝑠𝑠𝑖𝑖

𝑘𝑘(0) (or 
𝑠𝑠𝑖𝑖
𝑘𝑘(α)) means that the player 𝑖𝑖 does not contribute his resource (or contributes α more units 

of his resource). For the (𝑡𝑡 + 1)th game round time, the selection probability for the 
𝑠𝑠𝑖𝑖
𝑘𝑘(𝑑𝑑),1≤𝑑𝑑≤α  strategy �𝑝𝑝𝑡𝑡+1 �𝑠𝑠𝑖𝑖

𝑘𝑘(𝑑𝑑)��  is estimated based on the propensity of 𝑠𝑠𝑖𝑖
𝑘𝑘(𝑑𝑑) 
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�𝒢𝒢𝑖𝑖𝑡𝑡+1 �𝑠𝑠𝑖𝑖
𝑘𝑘(𝑑𝑑)��; it is described in the following; 

 

𝑝𝑝𝑡𝑡+1 �𝑠𝑠𝑖𝑖
𝑘𝑘(𝑑𝑑)� = 𝑒𝑒

𝒢𝒢𝑖𝑖
𝑡𝑡+1�𝑠𝑠𝑖𝑖

𝑘𝑘(𝑑𝑑)�
𝜓𝜓

∑ �𝑒𝑒
𝒢𝒢𝑖𝑖
𝑡𝑡+1�𝑠𝑠𝑖𝑖

𝑘𝑘(ℎ)�
𝜓𝜓 �α

ℎ=1

�                   (3) 

       s. t. ,

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝒢𝒢𝑖𝑖𝑡𝑡+1 �𝑠𝑠𝑖𝑖

𝑘𝑘(𝑑𝑑)� = ��(1 − 𝜉𝜉) × 𝒢𝒢𝑖𝑖𝑡𝑡 �𝑠𝑠𝑖𝑖
𝑘𝑘(𝑑𝑑)�� + �

𝛿𝛿𝑘𝑘

α
× �

𝑼𝑼𝑖𝑖
𝑡𝑡(𝑺𝑺𝑖𝑖) −𝑼𝑼𝑖𝑖

𝑡𝑡−1(𝑺𝑺𝑖𝑖)
𝑼𝑼𝑖𝑖
𝑡𝑡−1(𝑺𝑺𝑖𝑖)

���,     

if  𝑠𝑠𝑖𝑖
𝑘𝑘(𝑑𝑑) ∈ 𝑺𝑺𝑖𝑖  is selected at the 𝑡𝑡 time and 𝛿𝛿𝑘𝑘 = ��

𝜁𝜁𝑘𝑘

𝜁𝜁𝑙𝑙 �
𝑛𝑛

𝑙𝑙=1

𝒢𝒢𝑖𝑖𝑡𝑡+1 �𝑠𝑠𝑖𝑖
𝑘𝑘(𝑓𝑓)� = �(1 − 𝜉𝜉) × 𝒢𝒢𝑖𝑖𝑡𝑡 �𝑠𝑠𝑖𝑖

𝑘𝑘(𝑓𝑓)��  ,    otherwise,   s. t. , 𝑠𝑠𝑖𝑖
𝑘𝑘(𝑓𝑓) ≠ 𝑠𝑠𝑖𝑖

𝑘𝑘(𝑑𝑑) 

 

 
where 𝜓𝜓 is a positive Boltzmann cooling parameter and 𝜉𝜉 is the forgetting factor; it is 
essentially required when players face a game when the propensity adaptively changes over 
time. 𝛿𝛿𝑘𝑘 is the learning rate for the task 𝑘𝑘 toward maximizing the utility function. 
 
Considering the equations (1)-(3), we can set the maximization problem. From the 

viewpoint of central server, the main interest is to maximize its total MCS revenue according 
to the dynamically adjusting 𝒫𝒫𝑘𝑘  for each task. From the viewpoint of self-interesting 
individual smartphones, the major goal is to maximize their own payoff by selecting their 
strategies 𝑠𝑠𝑖𝑖𝑘𝑘. That is formally formulated like as 
 
𝐦𝐦𝐦𝐦𝐦𝐦
𝒫𝒫𝑘𝑘

 {𝑼𝑼0(𝑺𝑺0)�𝒫𝒫𝑘𝑘 ∈ 𝑺𝑺0, 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚}  and  𝐦𝐦𝐦𝐦𝐦𝐦
𝑠𝑠𝑖𝑖
𝑘𝑘

 �[𝑼𝑼𝑖𝑖(𝑺𝑺𝑖𝑖) − ℱ]�𝑠𝑠𝑖𝑖𝑘𝑘 ∈ 𝑺𝑺𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛� (4) 

s. t. ,ℱ = �𝔉𝔉(𝑘𝑘)
𝑚𝑚

𝑘𝑘=1

  and  𝒞𝒞𝑖𝑖(𝑘𝑘,𝒜𝒜𝑖𝑖) ≤ 𝔉𝔉(𝑘𝑘)              

 
where 𝔉𝔉(𝑘𝑘) is the damage cost for all smartphone users if the task 𝑘𝑘  has not been 
completed. Since the utilities of players are obtained from multiple tasks, players 
dynamically select different strategies for different tasks. For each task, smartphones invest 
their resources, and a central server assigns different unit_prices, individually. Therefore, the 
players’ interactive actions among various tasks is important in maximizing the players’ own 
income while improving the sensing performance of the MCS platform.  
 
In our OCF game model, game players are selfish but cooperate with each other to 

effectively form coalitions to accomplish the tasks. At each round of OCF game operations, 
players periodically observe the current their payoffs, which are obtained by the coordination 
of other players’ behaviors. Therefore, individual players can periodically observe the 
behaviors of other players in a roundabout way, and dynamically adjust their strategies. In 
our scenario, coalitions are tasks that consists of multiple players in 𝑵𝑵. They are willing to 
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participate in tasks while automatically forming coalitions; they can be overlapping, and 
their contributions are rewarded by the central server. According to the individual rationality, 
they do not invest their resources to a specific task unless their work produces any profits. 
From the point of view of central server, a cost-loss can be caused if the participation level 
of players in 𝑵𝑵 is less than some tasks’ thresholds. Or a profit-loss can be caused when the 
participation level of players in 𝑵𝑵 is much higher than some tasks’ thresholds. Therefore, to 
approximate an optimized solution, the central server adaptively adjusts the sensing prices 
through any possible set of central server’s price strategies to encourage players in 
participating or withdrawing some task works. During the step-by-step iteration, players 
individually adjust their strategies by using the dynamics of feedback-based repeated process, 
and attempt to guarantee the group rationality. Therefore, under widely diverse MCS 
situations, the main advantage of our proposed approach is a real-world practicality.  
 
C. The Main Steps of Proposed Algorithm 
 
With the development of mobile sensing and mobile Internet techniques, a new MCS 

paradigm has become popular while enabling a broad range of mobile applications. A critical 
challenge for the MCS paradigm is to induce smartphone users to be workers providing 
sensing services. While some control mechanisms for general-purpose crowdsourcing have 
been proposed, it is still an open issue as to how to incorporate the practical algorithms into 
the real-world MCS system. In this study, we propose a novel MCS control scheme based on 
the OCF game model. The proposed approach is a natural extension of traditional OCF game 
with adopt the concept of volunteer’s dilemma. Considering the step-by-step interactive 
feedback mechanism, the developed algorithm is designed as a repeated OCF game. The 
proposed algorithm is described by the following major steps, Pseudo code and a Flow 
diagram. 
 
 
Step 1: At the initial time, the strategy selection probability 𝑠𝑠𝑖𝑖

𝑘𝑘(·) of the player 𝑖𝑖 ∈ 𝑵𝑵 is 
equally distributed. This starting guess guarantees that each 𝑠𝑠𝑖𝑖

𝑘𝑘(·)strategy is selected 
randomly at the beginning of the game.  

 
Step 2: Control parameters 𝑛𝑛, 𝑚𝑚, 𝜂𝜂, 𝜓𝜓 and 𝜉𝜉 are given from the simulation scenario 

(refer to the Table 1).  
 
Step 3: During our iterative OCF game process, the central server decides price strategies 

�𝒫𝒫(·)� to maximize its payoff according to (1) and (4). 
 
Step 4: Based on the central server’s strategies, rational smartphone users individually select 

their strategies to maximize their own payoff. Using the equation (2) and (4), these 
decisions are made in an entirely distributed manner.   

 
Step 5: If some tasks have not been completed, the central server dynamically adjust the 

price strategies again in the same manner in Step 3, and all player in 𝑵𝑵 re-select 
their strategies �𝑠𝑠𝑖𝑖

𝑘𝑘(·)� based on the equation (3). 
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Step 6: The propensity of 𝑠𝑠𝑖𝑖
𝑘𝑘(·) is dynamically adjusted based on the interactive learning 

mechanism.  
 
Step 7: During the step-by-step iteration, players individually adjust their strategies by using 

the dynamics of feedback-based repeated process.  
 

Step 8: Under the real-world MCS environments, the central server and smartphone users 
are mutually dependent on each other to maximize their profits, and they constantly 
are self-monitoring the current system conditions; proceeds to Step 3 for the next 
game iteration. 

 

Init ( )  
{    1: Control parameter values (𝑛𝑛, 𝑚𝑚, 𝜂𝜂, 𝜓𝜓, α, 𝓣𝓣, 𝔸𝔸 and 𝜉𝜉) are given  

from the Table 1 in the Section IV.  
2: 𝑠𝑠𝑖𝑖,𝑖𝑖∈𝑵𝑵

𝑘𝑘(·)  is equally distributed 
} 
 
Main_Routine for the Central Server ( ) 
{  Start: Init (); 

For ( ; ; ) { 
3-1: For the current OCF game process, the central server decides 𝒫𝒫(·) to  

maximize its payoff based on the equation (1) and (4). 
4-1: Constantly observe the resource contribution from the individual  

users.  
5-1: If 𝒫𝒫(·) and users’ responses are not changed while completing all  

tasks,  
Then the OCF game process is temporarily stop; Go to step 4-1. 

6-1: If some tasks have not been completed,  
Then Go to step 3-1 to adaptively decrease the price 𝒫𝒫(·). 
Else Go to step 3-1 to adaptively increase the price 𝒫𝒫(·). } 

} 
 
Main_Routine for Individual Users ( ) 
{  Start: Init (); 

For ( ; ; ) { 
3-2: For the current OCF game process, each users individually select their 

strategies to maximize their own payoff according to the equation (2) and 
(4). 

4-2: Constantly observe the price strategy (𝒫𝒫(·)) from the central server. 
5-2: Using (3), the propensity of 𝑠𝑠𝑖𝑖

𝑘𝑘(·) is dynamically adjusted. 
6-2: If the central server changes the price 𝒫𝒫(·),  

Then Go to step 3-2 to re-consider the current strategy. 
Else Go to step 4-2 for the next game iteration. } 

} 
 

Pseudo code. MCS System Control Procedure 
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Fig. 1. Flow diagram for the proposed algorithm 

 
4. Performance Evaluation 

 
In this section, we compare the performance of our scheme with other existing schemes 

[5],[6],[10] and can confirm the performance superiority of the proposed approach by using a 
simulation model. Our simulation model is a representation of the MCS system 
environments that includes one central server with multiple sensing tasks, and individual 
smartphone users. To facilitate the development and implementation of our simulator, Table 
1 lists the system control parameters.  
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Table 1. System parameters used in the simulation experiments 

Paramete
r 

Value Description 

n 1 ≤ 𝑛𝑛 ≤ 30 the number of smartphone users (i.e., players in 𝑵𝑵)  
m 5 the number of sensing tasks in the central server 
𝜂𝜂 1 a cost control parameter for each task 
𝜓𝜓  1 a positive Boltzmann cooling parameter 
𝜉𝜉 0.1 a forgetting factor for the effective learning 
α 5 the number of more resource units for the non-completed 

task 
𝓣𝓣 {5, 10, 15, 20, 25} a set of each task’s thresholds 
𝔸𝔸 {5, 5, …, 5} a set of available resources for players in 𝑵𝑵 

 
To ensure the model is sufficiently generic to be valid in a real-world MCS scenario, the 

assumptions implemented in our simulation model were as follows. 
 

 
• The simulated system consists of one central server and 𝑛𝑛 number of smartphone users 

(1≤ 𝑛𝑛 ≤ 30) for the MCS system. 
• System performance measures are plotted as a function of the offered 𝑛𝑛 numbers.  
• All players in 𝑵𝑵 have the same amount of resources.  
• The number of tasks (m) in the central server is 5 and the outcome from the task 

completion is 𝜁𝜁1 = 10, 𝜁𝜁2 = 30, 𝜁𝜁3 = 40, 𝜁𝜁4 = 50, 𝜁𝜁5 = 100. 
• The set of each task’s thresholds (𝓣𝓣) is {𝔗𝔗1 = 5, 𝔗𝔗2 = 10, 𝔗𝔗3 = 15, 𝔗𝔗4 = 20, 𝔗𝔗5 = 25}. 
• 𝑺𝑺𝑖𝑖,0≤𝑖𝑖≤𝑛𝑛 is dynamically decided to maximize their payoffs. 
• The cost control parameter (𝜂𝜂) of all players in 𝑵𝑵 is the same for each task.  
• The amount of unit resource is 1, and multiple unit resources are adaptively distributed for 

each task. 
• System performance measures obtained on the basis of 50 simulation runs. 
• For simplicity, we assume the absence of physical obstacles in the experiments.  
 

 
Performance measures obtained through simulation are normalized payoffs for the central 

server and smartphone users, task completion probability, and resource utilization under 
different number of players. In this paper, we compare the performance of the proposed 
scheme with the existing schemes; the LBMCS scheme [5], the EAMCS scheme [10] and the 
OCGCS scheme [6]. These existing schemes were also recently developed as effective MCS 
control algorithms. However, these existing schemes were one-sided protocols and can not 
adaptively respond the current MCS system conditions. Therefore, they did not provide 
suitable solutions under different practical constraints.  
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Fig. 2. Normalized Payoffs for Smartphone Users 
 
Fig. 2 shows the performance comparison of each scheme in terms of the smartphone users’ 

normalized payoff on the MCS platform. From the point of view of smartphone users, it is an 
important performance metric. As the number of users increases, the total amount of 
available resources also increases, and the competition between users in sensing works is 
more intense. Therefore, the central server can lower the sensing prices to complete tasks. 
Due to this reason, the normalized payoff of smartphone users proportionally decreases with 
increasing the number of users. As shown in Fig. 2, we find that all the schemes produce 
similar performance trends. However, the payoff produced by the proposed scheme is higher 
than other schemes from few to many smartphone users. 

 
In Fig. 3, we depict how the central server’s normalized payoff changes over the number of 

smartphone users. In general, the better central server’s payoff gain means that the MCS 
system can successfully perform the sensing works. We observe that as more and more users 
are participating in sensing works, the sensing tasks are easily completed with lower sensing 
prices. This situation can lead to the higher payoff of central server. Due to the inclusion of 
interactive repeated OCF game approach, the proposed scheme can keep a better central 
server’s performance during the MCS system operations. 
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Fig. 3. Normalized Payoffs for the Central Server 

 
Fig. 4. Resource Utilization 
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The curves in Fig. 4 show the sensing resource utilization under different number of 
smartphone users. In this study, the resource utilization is calculated as the ratio of actually 
using bandwidth over total available bandwidth. It is observed that when the number of users 
is low (n < 15), the resource utilization is high. However, as the number of users increases, it 
decreases linearly. This is because with the increasing number of users, the amount of 
surplus resources also increases. This is intuitively correct. From the simulation results, the 
main observation is that the proposed scheme can effectively allocate sensing resources for 
multiple sensing tasks while maintaining a higher resource utilization than other existing 
schemes. 
 

 
 

Fig. 5. Task Completion Probability 
 
Fig. 5 indicates the task completion probability in the multiple sensing process. This 

measure is a key factor to successfully operate the MCS system. The performance trend is 
similar to the Fig. 3. Since the users in our OCF game-based scheme have more 
opportunities to effectively distribute their resources into sensing tasks, the proposed scheme 
can maintain the excellent task completion probability than other existing schemes. This 
feature is a highly desirable property for the multi-task MCS system management. The 
simulation results shown in Figs. 2-5 demonstrate the performance comparison of the 
proposed scheme and other existing schemes [5], [6], [10], and verify that the proposed OCF 
game-based scheme can provide an attractive MCS system performance. 
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5. Summary and Conclusions 
 
Nowadays, the exponential growth of smartphones creates a compelling paradigm of MCS. 

The MCS paradigm provides us various exciting and profitable applications. However, few 
studies addressed this issue, which significantly affects the functionality of MCS systems. In 
this study, we propose a novel MCS control scheme based on the repeated OCF game model. 
The proposed scheme is specifically for the real-world MCS system, where the smartphone 
users are paid off based on their contributions. Moreover, we have incorporated the concept 
of volunteer’s dilemma into our scheme to maximize the total system performance. Finally, 
we evaluate the proposed scheme by using simulation model and present extensive 
experimental results. Compared with the existing schemes, simulation result shows that the 
proposed scheme helps smartphone users to effectively select actions to achieve the socially 
balanced outcome while ensuring individual rationality. Future work will be pursued in the 
following directions. Theoretical analysis needs to be further developed. In addition, we are 
currently exploring a unified architecture for collecting and processing sensor data from 
smartphone sensing devices at a societal scale. Furthermore, the proposed OCF game model 
can be extended toward for other research areas; control decisions in resource management 
and scheduling, machine cognition, data mining, machine learning, big data analysis and 
natural computation, etc. 
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