• Title/Summary/Keyword: Sensing characteristics

Search Result 1,816, Processing Time 0.031 seconds

Selective Pattern Growth of Silica Nanoparticles by Surface Functionalization of Substrates (기판 표면 기능화에 의한 실리카 나노입자의 선택적 패턴 성장)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.20-25
    • /
    • 2020
  • As nanoscience and nanotechnology advance, techniques for selective pattern growth have attracted significant attention. Silica nanoparticles (NPs) are used as a promising nanomaterials for bio-labeling, bio-imaging, and bio-sensing. In this study, silica NPs were synthesized by a sol-gel process using a modified Stöber method. In addition, the selective pattern growth of silica NPs was achieved by the surface functionalization of the substrate using a micro-contact printing technique of a hydrophobic treatment. The particle size of the as-synthesized silica NPs and morphology of selective pattern growth of silica NPs were characterized by FE-SEM. The contact angle by surface functionalization of the substrate was investigated using a contact angle analyzer. As a result, silica NPs were not observed on the hydrophobic surface of the OTS solution treatment, which was coated by spin coating. In contrast, the silica NPs were well coated on the hydrophilic surface after the KOH solution treatment. FE-SEM confirmed the selective pattern growth of silica NPs on a hydrophilic surface, which was functionalized using the micro-contact printing technique. If the characteristics of the selective pattern growth of silica NPs can be applied to dye-doped silica NPs, they will find applications in the bio imaging, and bio sensing fields.

Development of intrusion detection technique using fiber optic ROTDR sensor (광섬유 ROTDR 센서를 이용한 침입 탐지기법의 개발)

  • Baik, Se-Jong;Kwon, Il-Bum;Chung, Chul;Yu, Jae-Wang
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.209-217
    • /
    • 2002
  • The developing of buried fiber optic sensor with high sensitivity and broad-area detecting intruders is carried out using fiber optic ROTDR(Rayleigh Optical Time Domain Reflectometry). The sensing part was designed to be able to broad-area detect intrusion effect per optical fiber length under ground. The bending light losses in optical fibers are investigated by commercial mini ROTDR with wavelength $1.55{\mu}m$, distance range 5km, pulse width 20ns, SNR=5.7. The sensing fibers are selected as the common telecommunication fibers are the 1.5mm, 3.5 mm outer diameter, 4km each length fiber products. Experiments were investigate the characteristics of signal sensitivity according to applied intrusion weight. The relation between the applied weight and the bending loss was almost linear, and broad-area detect intrusion effects are the 2m resolution and $1.3m^2$ per optical fiber length respectively. The light loss by the applied weight on fiber was 0.17 dB/kg. that the sensitivity of the optical fiber sensor was sufficient to detect intruders passing over the buried optical fiber.

Level 3 Type Land Use Land Cover (LULC) Characteristics Based on Phenological Phases of North Korea (생물계절 상 분석을 통한 Level 3 type 북한 토지피복 특성)

  • Yu, Jae-Shim;Park, Chong-Hwa;Lee, Seung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.457-466
    • /
    • 2011
  • The objectives of this study are to produce level 3 type LULC map and analysis of phenological features of North Korea, ISODATA clustering of the 88scenes of MVC of MODIS NDVI in 2008 and 8scenes in 2009 was carried out. Analysis of phenological phases based mapping method was conducted, In level 2 type map, the confusion matrix was summarized and Kappa coefficient was calculated. Total of 27 typical habitat types that represent the dominant species or vegetation density that cover land surface of North Korea in 2008 were made. The total of 27 classes includes the 17 forest biotopes, 7 different croplands, 2 built up types and one water body. Dormancy phase of winter (${\sigma}^2$ = 0.348) and green up phase in spring (${\sigma}^2$ = 0.347) displays phenological dynamics when much vegetation growth changes take place. Overall accuracy is (851/955) 85.85% and Kappa coefficient is 0.84. Phenological phase based mapping method was possible to minimize classification error when analyzing the inaccessible land of North Korea.

Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area (토지 피복별 차등 가열이 도시 지역의 흐름과 기온에 미치는 영향)

  • Park, Soo-Jin;Choi, So-Hee;Kang, Jung-Eun;Kim, Dong-Ju;Moon, Da-Som;Choi, Wonsik;Kim, Jae-Jin;Lee, Young-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.603-616
    • /
    • 2016
  • In this study, the effects of differential heating by land-use types on flow and air temperature at an Seoul Automated Synoptic Observing Systems (ASOS) located at Songwol-dong, Jongno-gu, Seoul was analyzed. For this, a computation fluid dynamics (CFD) model was coupled to the local data assimilation and prediction system (LDAPS) for reflecting the local meteorological characteristics at the boundaries of the CFD model domain. Time variation of temperatures on solid surfaces was calculated using observation data at El-Oued, Algeria of which latitude is similar to that of the target area. Considering land-use type and shadow, surface temperatures were prescribed in the LDAPS-CFD coupled model. The LDAPS overestimated wind speeds and underestimated air temperature compared to the observations. However, a coupled LDAPS-CFD model relatively well reproduced the observed wind speeds and air temperature, considering complicated flows and surface temperatures in the urban area. In the morning when the easterly was dominant around the target area, both the LDAPS and coupled LDAPS-CFD model underestimated the observed temperatures at the Seoul ASOS. This is because the Kyunghee Palace located at the upwind region was composed of green area and its surface temperature was relatively low. However, in the afternoon when the southeasterly was dominant, the LDAPS still underestimated, on the while, the coupled LDAPS-CFD model well reproduced the observed temperatures at the Seoul ASOS by considering the building-surface heating.

Detection of Group of Targets Using High Resolution Satellite SAR and EO Images (고해상도 SAR 영상 및 EO 영상을 이용한 표적군 검출 기법 개발)

  • Kim, So-Yeon;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • In this study, the target detection using both high-resolution satellite SAR and Elecro-Optical (EO) images such as TerraSAR-X and WorldView-2 is performed, considering the characteristics of targets. The targets of our interest are featured by being stationary and appearing as cluster targets. After the target detection of SAR image by using Constant False Alarm Rate (CFAR) algorithm, a series of processes is performed in order to reduce false alarms, including pixel clustering, network clustering and coherence analysis. We extend further our algorithm by adopting the fast and effective ellipse detection in EO image using randomized hough transform, which is significantly reducing the number of false alarms. The performance of proposed algorithm has been tested and analyzed on TerraSAR-X SAR and WordView-2 EO images. As a result, the average false alarm for group of targets is 1.8 groups/$64km^2$ and the false alarms of single target range from 0.03 to 0.3 targets/$km^2$. The results show that groups of targets are successfully identified with very low false alarms.

Development of Cloud Detection Method with Geostationary Ocean Color Imagery for Land Applications (GOCI 영상의 육상 활용을 위한 구름 탐지 기법 개발)

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.371-384
    • /
    • 2015
  • Although GOCI has potential for land surface monitoring, there have been only a few cases for land applications. It might be due to the lack of reliable land products derived from GOCI data for end-users. To use for land applications, it is often essential to provide cloud-free composite over land surfaces. In this study, we proposed a cloud detection method that was very important to make cloud-free composite of GOCI reflectance and vegetation index. Since GOCI does not have SWIR and TIR spectral bands, which are very effective to separate clouds from other land cover types, we developed a multi-temporal approach to detect cloud. The proposed cloud detection method consists of three sequential steps of spectral tests. Firstly, band 1 reflectance threshold was applied to separate confident clear pixels. In second step, thick cloud was detected by the ratio (b1/b8) of band 1 and band 8 reflectance. In third step, average of b1/b8 ratio values during three consecutive days was used to detect thin cloud having mixed spectral characteristics of both cloud and land surfaces. The proposed method provides four classes of cloudiness (thick cloud, thin cloud, probably clear, confident clear). The cloud detection method was validated by the MODIS cloud mask products obtained during the same time as the GOCI data acquisition. The percentages of cloudy and cloud-free pixels between GOCI and MODIS are about the same with less than 10% RMSE. The spatial distributions of clouds detected from the GOCI images were also similar to the MODIS cloud mask products.

An Overview of Operations and Applications of HF Ocean Radar Networks in the Korean Coast (한국연안 고주파 해양레이더망 운영과 활용 개관)

  • Kim, Ho-Kyun;Kim, Jung-Hoon;Son, Young-Tae;Lee, Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.351-375
    • /
    • 2018
  • This paper aims to i) introduce the characteristics of HF ocean radar and the major results and information produced by the radar networks in the Korean coasts to the readers, ii) make an up-to-date inventory of the existing radar systems, and iii) share the information related to the radar operating skill and the ocean current data application. The number of ocean radars has been showing a significant growth over the past 20 years, currently deploying more than 44 radars in the Korean coasts. Most of radars are in operation at the present time for the purposes related to the marine safety, tidal current forecast and understanding of ocean current dynamics, mainly depending on the mission of each organization operating radar network. We hope this overview paper may help expand the applicability of the ocean radar to fisheries, leisure activity on the sea, ocean resource management, oil spill response, coastal environment restoration, search and rescue, and vessel detection etc., beyond the level of understanding of tidal and ocean current dynamics. Additionally we hope this paper contributes further to the surveillance activity on our ocean territory by founding a national ocean radar network frame and to the domestic development of ocean radar system including signal processing technology.

Seismic Hazards near the Harbors using Historic and Instrumental Earthquake Data (역사 및 계기 지진 자료를 이용한 주요 항만 지역의 지진재해 위험성)

  • Kim, Kwang-Hee;Kang, Su-Young;Jang, In-Sung;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.419-425
    • /
    • 2009
  • Although earthquake damage was negligible in Korea during the last a few decades, its historic records suggest that the peninsula have experienced severe earthquake damages throughout the history. The potential for disastrous earthquakes, therefore, should always be considered. Harbors handle 99.6% of imported and exported cargo in Korea. Thus, it is necessary to secure the safety of harbors against seismic events and to establish a support system of emergency measures. Although instrumental seismic data are favored for seismic hazard estimation, their history in the peninsula is limited only to the past 30 years, which does not represent the long-term seismic characteristics of the peninsula. We use historic earthquakes with magnitude greater than 5 to observe long-term regional seismic hazards. Results of historic earthquake records indicate relatively high seismic hazard at harbors in Pohang, Ulsan and Incheon. Analysis of instrumental earthquake records reveal relatively high seismic hazard for harbors located along the East coast including Okgye, Mukho, Donghae, Samcheok, Pohang, and Ulsan.

CO Sensing Properties in Layer structure of SnO2-ZnO System prepared by Thick film Process (SnO2-ZnO계 후막센서 구조에 따른 CO 감지 특성)

  • Park, Bo-Seok;Hong, Kwang-Joon;Kim, Ho-Gi;Park, Jin-Seoung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • The sensing properties of carbon monooxide were investigated as a function of mixing ratio and the lamination structure of 3mol% ZnO-doped $SnO_2$ and 3mol% $SnO_2$-doped ZnO. The lamination structures were fabricared monolayer, double layer, and hetero layer of $SnO_2$, Zno, and theirs mixture composition using thick film process. There was no second phase by the reaction of $SnO_2$ and ZnO. The conductance was decreased by the addition of ZnO in $SnO_2$, but it was increased with the addition of $SnO_2$ in ZnO. The conductance was increased with temperature and the inlet of CO. There was no improvement of sensitivity in the structure of mono- and double-layer. The hetero-layer structure, however, of $SnO_2$ 3ZnO-ZnO $3SnO_2$ showed the higher resistivity and the highest sensitivity. Ohmic characteristics was confirmed by the linear properties for I-V measurements.

Bio-Sensing Convergence Big Data Computing Architecture (바이오센싱 융합 빅데이터 컴퓨팅 아키텍처)

  • Ko, Myung-Sook;Lee, Tae-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.