• Title/Summary/Keyword: Sensible Heat

Search Result 332, Processing Time 0.02 seconds

Evaluation of JULES Land Surface Model Based on In-Situ Data of NIMS Flux Sites (국립기상과학원 플럭스 관측 자료 기반의 JULES 지면 모델 모의 성능 분석)

  • Kim, Hyeri;Hong, Je-Woo;Lim, Yoon-Jin;Hong, Jinkyu;Shin, Seung-Sook;Kim, Yun-Jae
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.355-365
    • /
    • 2019
  • Based on in-situ monitoring data produced by National Institute of Meteorological Sciences, we evaluated the performance of Joint UK Land Environment Simulator (JULES) on the surface energy balance for rice-paddy and cropland in Korea with the operational ancillary data used for Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (CTL) and the high-resolution ancillary data from external sources (EXP). For these experiments, we employed the one-year (March 2015~February 2016) observations of eddy-covariance fluxes and soil moisture contents from a double-cropping rice-paddy in BoSeong and a cropland in AnDong. On the rice-paddy site the model performed better in the CTL experiment except for the sensible heat flux, and the latent heat flux was underestimated in both of experiments which can be inferred that the model represents flood-irrigated surface poorly. On the cropland site the model performance of the EXP experiment was worse than that of CTL experiment related to unrealistic surface type fractions. The pattern of the modeled soil moisture was similar to the observation but more variable in time. Our results shed a light on that 1) the improvement of land scheme for the flood-irrigated rice-paddy and 2) the construction of appropriate high-resolution ancillary data should be considered in the future research.

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

Effects of Different Averaging Operators on the Urban Turbulent Fluxes (평균 방법이 도시 난류 플럭스에 미치는 영향)

  • Kwon, Tae Heon;Park, Moon-Soo;Yi, Chaeyeon;Choi, Young Jean
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.197-206
    • /
    • 2014
  • The effects of different averaging operators and atmospheric stability on the turbulent fluxes are investigated using the vertical velocity, air temperature, carbon dioxide concentration, and absolute humidity data measured at 10 Hz by a 3-dimensional sonic anemometer and an open-path $CO_2/H_2O$ infrared gas analyzer installed at a height of 18.5 m on the rooftop of the Jungnang KT building located at a typical residential area in Seoul, Korea. For this purpose, 7 different averaging operators including block average, linear regression, and moving averages during 100 s, 300 s, 600 s, 900 s, and 1800 s are considered and the data quality control procedure such as physical limit check and spike removal is also applied. It is found that as the averaging interval becomes shorter, turbulent fluxes computed by the moving average become smaller and the ratios of turbulent fluxes computed by the 100 s moving average to the fluxes by the 1800 s moving average under unstable stability are smaller than those under neutral stability. The turbulent fluxes computed by the linear regression are 85~92% of those computed by the 1800 s moving average and nearly the same as those computed by 900 s moving average, implying that the adequate selection of an averaging operator and its interval will be very important to estimate more accurate turbulent fluxes at urban area.

A Case Study on Causes and Characteristics of the Local Snowstorm in Jeju Island During 23 January 2016 (2016년 1월 23일 제주도에 일어난 국지규모 폭설의 원인과 특징에 관한 사례 연구)

  • Yeo, Ji-Hye;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.177-188
    • /
    • 2017
  • The development mechanisms of an unusual heavy snowfall event, which occurred in the coast of Jeju Island on 23 January 2016 were investigated through a thermodynamic approach. The formation of heavy snowfall was attributed to the enhanced thermal convection in two ways. First, the convection was enhanced by the air-sea temperature difference between the cold air advection in low-troposphere associated with the strengthening of the Siberian High and abnormal warm sea surface temperature, which is $1{\sim}2^{\circ}C$ higher than normal year over the Yellow Sea (YS). Second, the convective instability was increased by the vertical temperature gradient between the 7 days-sustained cold air advection in low-troposphere and the abrupt cold air intrusion in mid-troposphere induced by the southward shift of a cold cut-off vortex ($-45^{\circ}C$) at the formation stage. Compared to the twelve hours prior to the formation, the low-level moisture increased by 5% through the moisture supply from the YS, and the air-sea temperature difference increased from $18.5^{\circ}C$ to $28.5^{\circ}C$. Furthermore, the upward sensible (latent) heat flux increased 1.5 (1.2) times over the YS before the twelve hours prior to the formation. Thereafter, the sustained moisture supply and upward turbulent heat flux helped to maintain the snowstorm.

Derivation of Biochemical and Biophysical Parameters and Their Application to the Simple Biosphere Model (SiB2) (생화학 및 생물리 모수들의 도출과 생권 모형(SiB2)에의 적용)

  • Chae Nam-Yi;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 1999
  • Vegetation canopy plays an important role in $CO_2$/$H_2$O exchange between the biosphere and the atmosphere by controlling leaf stomata. In this study, rice (Oryza sativa L.), a staple crop in Asia was investigated to formulate its single leaf model of photosynthesis and stomatal conductance. Photosynthesis and stomatal conductance were measured with a portable infrared gas analyzer system. Other plant and meteorological variables were also measured. To evaluate empirical constants in this biochemical leaf model, nonlinear least squares technique was used. The maximum catalytic activity of enzyme and the maximum rate of electron transport were $ 100\mu$$m^{-2}$ $s^{-1}$ and $140 \mu$㏖ m$^{-2}$ s$^{-1}$ (@ 35$^{\circ}C$), respectively. The empirical constants, m and b, associated with stomatal conductance model were 9.7 and $0.06 m^{-2}$ $s^{-1}$ , respectively. On a leaf scale, agreements between the modeled and the measured values of photosynthesis and stomatal conductance were on average within 20%, and the simulation of diurnal variation was also satisfactory On a canopy scale, the Simple Biosphere model(SiB2) was tested using the derived parameters. The modeled energy fluxes were compared against the micrometeorologically measured fluxes over a rice canopy. Agreements between the modeled and the measured values of net radiation, sensible heat and latent heat fluxes, and $CO_2$ flux (i.e., net canopy photosynthesis) were on average within 25%.

  • PDF

Numerical Study of the Post Combustion Chamber of Grate Type Incinerator in Daejon 4th Industrial Complex (대전 4공단 소각로 후연소로 모델 연구)

  • Kim Hey-Suk;Shin Mi-Soo;Jang Dong-Soon;Park Byung-Soo;Um Tae-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • A 3-D axisymmetric computer program is developed to predict the NO behavior in SNCR system for the stoker incinerator with the waste treatment capacity, 200ton/day. To this end a turbulent reacting flow field calculation is made using proper assumption and empiricism. The stoker bed is assumed to be a homogeneous waste-volatilized gaseous state. The initial composition or reactants are assumed based on the data of the ultimate analysis. Turbulent is resolved by k-e model and turbulent reaction is handled by eddy-breakup model harmonized with empirical chemistry data for gaseous combustion, NO and urea reaction. The liquid droplet is traced by Lagrangian method incorporated by aerodynamic drag, Coriolis and crntrifugal forces. Radiation is treated by sensible heat loss model. Calculation results are in good agreement with experimental data at the outlet of post combustion chamber in Daejon 4th industrial complex. The flue gas shows the temperature range of $900\sim1000^{\circ}C$, velocity of 5m/s and NO concentration of 140ppm at the exit while the measured temperature, flue gas velocity and NO concentration are $967^{\circ}C$, $3\sim4m/s$ and $100\sim200ppm$respectively. Using the developed computer program a parametric study has been made with the variation of heat content of waste, castable length and SNCR variables for the determination of proper injector location. In general, the calculated results are consistent and physically acceptable.

  • PDF

Landscape Planning and Design Methods with Human Thermal Sensation (인간 열환경 지수(HumanThermal Sensation)를 이용한 조경계획 및 디자인 방법)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Human thermal sensation based on a human energy balance model was analyzed in the study areas, the Changwon and Nanaimo sites, on clear days during thesummer of 2009. The climatic input data were air temperature, relative humidity, wind speed and solar and terrestrial radiation. The most effective factors for human thermal sensation were direct beam solar radiation, building view factor and wind speed. Shaded locations had much lower thermal sensation, slightly warm, than sunny locations, very hot. Also, narrow streets in the Nanaimo site had higher thermal sensation than open spaces because of greater reflected solar radiation and terrestrial radiation from their surrounding buildings. Calm wind speed also produced much higher thermal sensation, which reduced sensible and latent heat loss from the human body. By adopting climatic factors into landscape architecture, the human thermal sensation analysis method promises to help create thermally comfortable outdoor areas. The method can also be used for urban heat island modification and climate change studies.

Retrieval of Key Hydrological Parameters in the Yellow River Basin Using Remote Sensing Technique

  • Dong, Jiang;Jianhua, Wang;Xiaohuan, Yang;Naibin, Wang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.721-727
    • /
    • 2002
  • Precipitation evapotranspiration and runoff are three key parameters of regional water balance. Problems exist in the traditional methods for calculating such factors , such as explaining of the geographic rationality of spatial interpolating methods and lacking of enough observation stations in many important area for bad natural conditions. With the development of modern spatial info-techniques, new efficient shifts arose for traditional studies. Guided by theories on energy flow and materials exchange within Soil-Atmosphere-Plant Continuant (SPAC), retrieval models of key hydrological parameters were established in the Yellow River basin using CMS-5 and FengYun-2 meteorological satellite data. Precipitation and evapotranspiration were then estimated: (1) Estimating tile amount of solar energy that is absorbed by the ground with surface reflectivity, which is measured in the visible wavelength band (VIS): (2) Assessing the partitioning of the absorbed energy between sensible and latent heat with the surface temperature, which was measured in the thermal infrared band (TIR), the latent heat representing the evapotranspiration of water; (3) Clouds are identified and cloud top levels are classified using both VIS and TIR data. Hereafter precipitation will be calculated pixel by pixel with retrieval model. Daily results are first obtained, which are then processed to decade, monthly and yearly products. Precipitation model has been has been and tested with ground truth data; meanwhile, the evapotranspiration result has been verified with Large Aperture Scintillometry (LAS) presented by Wageningen University of the Netherlands. Further studies may concentrate on the application of models, i.e., establish a hydrological model of the Yellow river basin to make the accurate estimation of river volume and even monitor the whole hydrological progress.

  • PDF

A Study of Cooldown Performance of Shutdown Cooling System of Korea Next Generation Reactor (차세대 원자로 정지냉각계통의 냉각 성능에 대한 연구)

  • 유성연;이상섭
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.525-532
    • /
    • 1999
  • The standardized Korea Next Generation Reactor (KNGR) NSSS has developed in the basis of the ABB-CE System 80+ design concept. In this study, several regulatory requirements for the KNGR shutdown cooling system (SCS) operation are investigated. The purpose of this study is to establish the technical self-reliance for SCS design by supporting fundamental data such as SDCHX effective area and reactor CCW flow rate. Thermal power of KNGR would be increased to about 4,000 $MW_{th}$ in comparison with thermal power 2.825 $MW_{th}$ of UCN 3&4, therefore, SCS design data shall b recalculated by using the KDESCENT Code, which could evaluate cooling capability of SCS. It is found that SCS minimum flow rate is able to remove the primary sensible heat. Reviewing the major components such as heat exchanger, pump, value, and operating procedure, it is concluded as follows.

  • PDF

Understanding Physical Mechanism of 2022 European Heat Wave (2022년 발생한 기록적인 유럽 폭염 발생의 역학적 원인 규명 연구)

  • Ju Heon Kim;Gun-Hwan Yang;Hyun-Joon Sung;Jung Hyun Park;Eunkyo Seo
    • Atmosphere
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2023
  • This study investigates the physical mechanisms that contributed to the 2022 European record-breaking heatwave throughout May-August (MJJA). The European climate has experienced surface warming and drying in the recent decade (1979~2022) which influences the development of the 2022 European heatwave. Since its spatial pattern resembles the 2003 European heatwave which is a well-known case developed by the strong coupling of near-surface conditions to land surface processes, the 2022 heatwave is compared with the 2003 case. Understanding heatwave development is carried out by the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and daily maximum surface temperature released by NCEP (National Centers for Environmental Prediction) CPC (Climate Prediction Center). The results suggest that the persistent high pressure along with clear sky tends to increase the downward shortwave radiation which leads to enhanced sensible heat flux with the land surface dryness. Terrestrial Coupling Index (TCI), a process-based multivariate metric, is employed to quantitatively measure segmented feedback processes, separately for the land, atmosphere, and two-legged couplings, which appears to the development of the 2022 heatwave, can be viewed as an expression of the recent trends, amplified by internal land-atmosphere interactions.