• Title/Summary/Keyword: Semiprime ring

Search Result 82, Processing Time 0.016 seconds

AN IDENTITY ON STANDARD OPERATOR ALGEBRA

  • SHUJAT, FAIZA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1129-1135
    • /
    • 2022
  • The purpose of this research is to find an extension of the renowned Chernoff theorem on standard operator algebra. Infact, we prove the following result: Let H be a real (or complex) Banach space and 𝓛(H) be the algebra of bounded linear operators on H. Let 𝓐(H) ⊂ 𝓛(H) be a standard operator algebra. Suppose that D : 𝓐(H) → 𝓛(H) is a linear mapping satisfying the relation D(AnBn) = D(An)Bn + AnD(Bn) for all A, B ∈ 𝓐(H). Then D is a linear derivation on 𝓐(H). In particular, D is continuous. We also present the limitations on such identity by an example.

On Skew Centralizing Traces of Permuting n-Additive Mappings

  • Ashraf, Mohammad;Parveen, Nazia
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Let R be a ring and $D:R^n{\longrightarrow}R$ be n-additive mapping. A map $d:R{\longrightarrow}R$ is said to be the trace of D if $d(x)=D(x,x,{\ldots}x)$ for all $x{\in}R$. Suppose that ${\alpha},{\beta}$ are endomorphisms of R. For any $a,b{\in}R$, let < a, b > $_{({\alpha},{\beta})}=a{\alpha}(b)+{\beta}(b)a$. In the present paper under certain suitable torsion restrictions it is shown that D = 0 if R satisfies either < d(x), $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$ or ${\ll}$ d(x), x > $_{({\alpha},{\beta})}$, $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$. Further, if < d(x), x > ${\in}Z(R)$, the center of R, for all $x{\in}R$ or < d(x)x - xd(x), x >= 0, for all $x{\in}R$, then it is proved that d is commuting on R. Some more related results are also obtained for additive mapping on R.