• Title/Summary/Keyword: Semiprime $\Gamma$-rings

Search Result 6, Processing Time 0.025 seconds

LOWER RADICALS OF Γ-RINGS

  • Le Roux, H.J.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.191-195
    • /
    • 1987
  • In this note we introduce the concept of a lower radical for ${\Gamma}$-rings. As an application we also characterise the prime radical introduced by Barnes [1] as a lower radical. Furthermore it is shown that the prime radical can also be determined by the class of all semiprime ${\Gamma}$-rings.

  • PDF

DERIVATIONS WITH NILPOTENT VALUES ON Γ-RINGS

  • Dey, Kalyan Kumar;Paul, Akhil Chandra;Davvaz, Bijan
    • The Pure and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.237-246
    • /
    • 2014
  • Let M be a prime ${\Gamma}$-ring and let d be a derivation of M. If there exists a fixed integer n such that $(d(x){\alpha})^nd(x)=0$ for all $x{\in}M$ and ${\alpha}{\in}{\Gamma}$, then we prove that d(x) = 0 for all $x{\in}M$. This result can be extended to semiprime ${\Gamma}$-rings.

AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1051-1060
    • /
    • 2009
  • In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum of prime ideals, is a compact space, and Max(N), the maximal ideals of N, forms a compact $T_1$-subspace. We also study the zero-divisor graph $\Gamma_I$(R) with respect to the completely semiprime ideal I of N. We show that ${\Gamma}_{\mathbb{P}}$ (R), where $\mathbb{P}$ is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph ${\Gamma}_{\mathbb{P}}$ (R).

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.