• Title/Summary/Keyword: Semiconductor-sensitized solar cell

Search Result 34, Processing Time 0.027 seconds

Physical-based Dye-sensitized Solar Cell Equivalent Circuit Modeling and Performance Analysis (물리 기반의 염료 감응형 태양전지 등가회로 모델링 및 성능 분석)

  • Wonbok Lee;Junhyeok Song;Hwijun Choi;Bonyong Gu;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.67-72
    • /
    • 2023
  • In this paper, a dye-sensitized solar cell (DSSC), one of the representative third-generation solar cells with eco-friendly materials and processes compared to other solar cells, was modeled using MATLAB/Simulink. The simulation was conducted by designating values of series resistance, parallel resistance, light absorption coefficient, and thin film electrode thickness, which are directly related to the efficiency of dye-sensitized solar cells, as arbitrary experimental values. In order to analyze the performance of dye-sensitized solar cells, the optimal value among each parameter experimental value related to efficiency was found using formulas for fill factor (FF) and conversion efficiency.

  • PDF

A Study on the Characteristics of TiO2-Nb2O5 Semiconductor Oxides Using Dye-Sensitized Solar Cell (TiO2-Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성개선연구)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.538-542
    • /
    • 2019
  • Semiconductor oxides such as $TiO_2$ involved in light conversion efficiency are the main elements of dye-sensitized solar cells (DSSC) and are used to mix different semiconductor oxides to improve efficiency. In this research, characteristics of the dye-sensitive solar cell are studied using semiconductor oxide formed by mixing $TiO_2$ and $Nb_2O_5$. A solar cell is manufactured by adding $Nb_2O_5$ at different ratios in order to analyze electrical characteristics of a mixed semiconductor oxide on light conversion efficiency. With the addition of $Nb_2O_5$, the conductivity was further enhanced than the recombination phenomenon caused by contact with electrolytes, confirming the improve of short-circuit, open voltage, and conversion efficiency of solar cells.

A Study on the Characteristics of Semiconductor Oxides with V2O5 (V2O5가 첨가된 반도체 산화물의 특성개선연구)

  • Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.965-969
    • /
    • 2018
  • In the dye-sensitized solar cell, the semiconductor oxide plays an important role in the generation and transport of electrons, and thus extensive research on this has been continuously carried out. In this study, the characteristics of dye-sensitized solar cell are studied by fabricating semiconductor oxide doped with $V_2O_5$. The $TiO_2$ paste with $V_2O_5$ is prepared by the screen printing method of the sol - gel process and the surface and electrical properties are measured. The addition of $V_2O_5$ increased grain size and improved the open circuit voltage, short circuit current, charge factor and conversion efficiency of the dye sensitized solar cell.

Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells

  • Bang, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4063-4068
    • /
    • 2012
  • Oxide substrates in semiconductor-sensitized solar cells (SSSCs) have a great impact on their performance. $TiO_2$ has long been utilized as an oxide substrate, and other alternatives such as ZnO and $SnO_2$ have also been explored due to their superior physical properties over $TiO_2$. In the development of high-performance SSSCs, it is of significant importance to understand the effect of oxides on the electron injection and charge recombination as these two are major factors in dictating solar cell performance. In addition, elucidating the relationship between these two critical processes and solar cell performance in each oxide is critical in building up the basic foundation of SSSCs. In this study, ultrafast pump-probe laser spectroscopy and open-circuit decay analysis were conducted to examine the characteristics of three representative oxides ($TiO_2$, ZnO, and $SnO_2$) in terms of electron injection kinetics and charge recombination, and the implication of results is discussed.

A Study on the Characteristics of Dye-Sensitized Solar Cell Using Nb2O5 Semiconductor Oxides (Nb2O5 반도체 산화물을 이용한 염료 감응 태양전지 특성 연구)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.330-333
    • /
    • 2019
  • Various studies on dye-sensitized solar cells, which are cheaper to manufacture and have superior stability than silicon solar cells, are continuously conducted. In this study, the properties of dye-sensitized solar cells were studied using semiconductor oxides made by mixing $TiO_2$ and $Nb_2O_5$. By adding $Nb_2O_5$ in different proportions, the solar cell was made, and the surface area and electrical characteristics of this cell were measured. As $Nb_2O_5$ was added, the contact area of dye and electrolyte increased and the short-circuit current, open voltage, fill factor and conversion efficiency of dye-sensitized solar cells were confirmed to be improved.

Electrochemical Approaches to Dye-Sensitized Solar Cells (염료감응 태양전지의 전기화학적 접근을 통한 해석)

  • Jo, Yim-Hyun;Lim, Jeong-Min;Nam, Hee-Jin;Jun, Yong-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.301-310
    • /
    • 2009
  • This paper describes one of the hot issues in solar cell studies, dye-sensitized solar cell. DSSC is a kind of photoelectrochemical cells. Therefore, it is quite different from the conventional solar cells which originate from pn semiconductor theory, although its mechanism can be explained with the theory. This paper describes the difference between the conventional semiconductor approaches and a newly adapted one for DSSC. Especially, electrochemical analysis methods such as electrochemical impedance analysis and cyclic voltammogram are briefly introduced, which are commonly used for DSSC analysis.

A Study on the Efficiency of Dye Sensitized Solar Cell Based on the Volume of Binder Addition (바인더 함량에 따른 염료감응 태양전지의 효율에 관한 연구)

  • Ki, Hyun-Chul;Jung, Haeng-Yun;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.878-881
    • /
    • 2013
  • In this study, we have fabricated the dye sensitized solar cell (DSSC) composed by a transparent conductive oxide (TCO), a nanocrystalline semiconductor film usually $TiO_2$, a sensitizer adsorbed on the surface of the semiconductor, an electrolyte containing a redox mediator and a counter electrode. The $TiO_2$ nanopowder was prepared by sol-gel methode. The HCl (hydrochloric acid) and TBAOH (Tetrabutyl amonium hydroxide) was added for improving the catalyst and distributed properties of $TiO_2$ nanopowder. Ammonium hydroixde was added in order to control the morphology and size of $TiO_2$ nano crystal. A $TiO_2$ paste for working electrode was prepared with the addition of HPC (hydroxypropyl cellulos) used as a binder of which volume was controled as 1.3, 1.5, 1.7, and 2.0%. The measured I-V curves of assembled DSSC showed that the cell with 1.7% HPC binder had the best efficiency of 6.79%.

Improving the Performances of Dye-Sensitized Solar Cell by the Optimal $TiO_2$ Photoelectrode Thickness and Light-Scattering Enhancement (최적 $TiO_2$ 전극 두께 및 광산란 증가에 의한 염료감응형 태양광전지의 효율 개선)

  • Niu, Zeng Yuan;Kweon, Hyun Kyu;Park, Chang Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.37-44
    • /
    • 2014
  • In this study, the performance of dye-sensitized solar cells with different thickness of the photelectrode film was simulated by using the electron-diffusion differential model. Through this simulation, the relationships between the thickness of the photoelectrode film and the performances (open-circuit voltage, short-circuit current density, and overall photoelectric-conversion efficiency) of cells were understood and the performances with different thickness of the photoelectrede film were also examined. For considering the refractive index in the liquid electrolyte and exploring the scattering effect of titanium dioxide particles with different sizes using the Mie light-scattering theory, the highest scattering effect of each particles was found out and the optimal size of the titanium dioxide particle was determined for light scattering in the photoelectrode film of dye-sensitized solar cell. Through experiment, the mixed titanium dioxide cell was better than the single titanium dioxide cell and generated a higher overall conversion efficiency because the optimal titanium dioxide particles in the phoelectrode film as light scattering.

The Effect of $TiO_2$ Thickness on the Performance of Dye-Sensitized Solar Cells ($TiO_2$ 두께에 따른 염료감응형 태양전지의 효율 변화)

  • Kim, Dae-Hyun;Park, Mi-Ju;Lee, Sung-Uk;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • Dye-sensitized solar cell using conversion of solar energy to electrical energy appeared that which solves a environmental matter. The dye-sensitized solar cell uses nano-crystalline oxide semiconductor for absorbing dye. The $TiO_2$ is used most plentifully. The efficiency of the dye-sensitized solar cell changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. In this paper, we report The effect of titania$(TiO_2)$ thickness on the performance of dye-sensitized solar cells. Using doctor blade method, It produced the thickness of the $TiO_2$ with $7\;{\mu}m,\;10\;{\mu}m,\;13\;{\mu}m$. The efficiency was the best from $10{\mu}m$. It had relatively low efficiency on the thickness from $7\;{\mu}m\;to\;13\;{\mu}m$. The reason why it presents low efficiency on $7\;{\mu}m$ thickness is that excited electrons can not be delivered enough due to thin thickness of $7\;{\mu}m\;TiO_2$. And The reason why it presents low efficiency on $13\;{\mu}m$ thickness is that thick $13\;{\mu}m\;TiO_2$ can not penetrate the sunlight enough.

  • PDF

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF