• Title/Summary/Keyword: Semiconductor Die

검색결과 175건 처리시간 0.018초

A Low-power High-resolution Band-pass Sigma-delta ADC for Accelerometer Applications

  • Cao, Tianlin;Han, Yan;Zhang, Shifeng;Cheung, Ray C.C.;Chen, Yaya
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권3호
    • /
    • pp.438-445
    • /
    • 2017
  • This paper presents a low-power high-resolution band-pass ${\Sigma}{\Delta}$ ADC for accelerometer applications. The proposed band-pass ${\Sigma}{\Delta}$ ADC consists of a high-performance 6-th order feed-forward ${\Sigma}{\Delta}$ modulator with 1-bit quantization and a low-power, area-efficient digital filter. The ADC is fabricated in 180 nm 1P6M mixed-signal CMOS process with a die area of $5mm^2$. This high-resolution ADC got 90 dB peak signal to noise plus distortion ratio (SNDR) and 96 dB dynamic range (DR) over 4 kHz bandwidth, while the intermediate frequency (IF) is shifting from 100 KHz to 200 KHz. The power dissipation of the chip is 5.6 mW under 1.8 V (digital)/3.3 V (analog) power supply.

Efficient Use of Unused Spare Columns for Reducing Memory Miscorrections

  • Jung, Ji-Hun;Ishaq, Umair;Song, Jae-Hoon;Park, Sung-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권3호
    • /
    • pp.331-340
    • /
    • 2012
  • In the deep sub-micron ICs, growing amounts of on-die memory and scaling effects make embedded memories increasingly vulnerable to reliability and yield problems. Spare columns are often included in memories to repair defective cells or bit lines during production test. In many cases, the repair process will not use all spare columns. Schemes have been proposed to exploit these unused spare columns to store additional check bits which can be used to reduce the miscorrection probability for triple errors in single error correction-double error detection (SEC-DED). These additional check bits increase the dimensions of the parity check matrix (H-matrix) requiring extra area overhead. A method is proposed in this paper to efficiently fill the extra rows of the H-matrix on the basis of similarity of logic between the other rows. Optimization of the whole H-matrix is accomplished through logic sharing within a feasible operating time resulting in reduced area overhead. A detailed implementation using fuse technology is also proposed in this paper.

A Digital Readout IC with Digital Offset Canceller for Capacitive Sensors

  • Lim, Dong-Hyuk;Lee, Sang-Yoon;Choi, Woo-Seok;Park, Jun-Eun;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권3호
    • /
    • pp.278-285
    • /
    • 2012
  • A digital readout IC for capacitive sensors is presented. Digital capacitance readout circuits suffer from static capacitance of sensors, especially single-ended sensors, and require large passive elements to cancel such DC offset signal. For this reason, to maximize a dynamic range with a small die area, the proposed circuit features digital filters having a coarse and fine compensation steps. Moreover, by employing switched-capacitor circuit for the front-end, correlated double sampling (CDS) technique can be adopted to minimize low-frequency device noise. The proposed circuit targeted 8-kHz signal bandwidth and oversampling ratio (OSR) of 64, thus a $3^{rd}$-order ${\Delta}{\Sigma}$ modulator operating at 1 MH was used for pulse-density-modulated (PDM) output. The proposed IC was designed in a 0.18-${\mu}m$ CMOS mixed-mode process, and occupied $0.86{\times}1.33mm^2$. The measurement results shows suppressed DC power under about -30 dBFS with minimized device flicker noise.

DBD(Dielectric Barrier Discharges)에서 전공 플라즈마 발생에 대한 해석적 연구 (An Analysis of Vacuum Plasma Phenomena in DBD(Dielectric Barrier Discharges))

  • 선명수;차성훈;김종봉;김종호;김성영;이혜진
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.122-128
    • /
    • 2009
  • DBD(Dielectric Barrier Discharges) plasma is often used to clean the surface of semiconductor. The cleaning performance is affected mainly by plasma density and duration time. In this study, the plasma density is predicted by coupled simulation of flow, chemistry mixing and reaction, plasma, and electric field. 13.56 MHz of RF source is used to generate plasma. The effect of dielectric thickness, gap distance, and flow velocity on plasma density is investigated. It is shown that the plasma density increases as the dielectric thickness decreases and the gap distance increases.

A 67.5 dB SFDR Full-CMOS VDSL2 CPE Transmitter and Receiver with Multi-Band Low-Pass Filter

  • Park, Joon-Sung;Park, Hyung-Gu;Pu, Young-Gun;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.282-291
    • /
    • 2010
  • This paper presents a full-CMOS transmitter and receiver for VDSL2 systems. The transmitter part consists of the low-pass filter, programmable gain amplifier (PGA) and 14-bit DAC. The receiver part consists of the low-pass filter, variable gain amplifier (VGA), and 13-bit ADC. The low pass filter and PGA are designed to support the variable data rate. The RC bank sharing architecture for the low pass filter has reduced the chip size significantly. And, the 80 Msps, high resolution DAC and ADC are integrated to guarantee the SNR. Also, the transmitter and receiver are designed to have a wide dynamic range and gain control range because the signal from the VDSL2 line is variable depending on the distance. The chip is implemented in 0.25 ${\mu}m$ CMOS technology and the die area is 5 mm $\times$ 5 mm. The spurious free dynamic range (SFDR) and SNR of the transmitter and receiver are 67.5 dB and 41 dB, respectively. The power consumption of the transmitter and receiver are 160 mW and 250 mW from the supply voltage of 2.5 V, respectively.

미세 Si 입자를 고려한 Al-1%Si 본딩 와이어의 신선공정해석 (FE-simulation of Drawing Process for Al-1%Si Bonding Wire Considering Fine Si Particle)

  • 고대철;황원호;이상곤;김병민
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.421-427
    • /
    • 2006
  • Drawing process of Al-1%Si bonding wire considering fine Si particle is analyzed in this study using FE-simulation. Al-1%Si boding wire requires electric conductivity because Al-1%Si bonding wire is used for interconnection in semiconductor device. About 1% of Si is added to Al wire for dispersion-strengthening. Distribution and shape of fine Si particle have strongly influence on the wire drawing process. In this study, therefore, the finite-element model based on the observation of wire by continuous casting is used to analyze the effect of various parameters, such as the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle on wire drawing processes. The effect of each parameter on the wire drawing process is investigated from the aspect of ductility and defects of wire. From the results of the analysis, it is possible to obtain the important basic data which can be guaranteed in the fracture prevention of Al-1 %Si wire.

A CMOS Hysteretic DC-DC Buck Converter with a Constant Switching Frequency

  • Jeong, Taejin;Yoon, Kwang S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권4호
    • /
    • pp.471-476
    • /
    • 2015
  • This paper describes a CMOS hysteretic DC-DC buck converter with a constant switching frequency for mobile applications. The inherent problems of a large output ripple voltage that the conventional hysteretic DC-DC buck converters has faced have been resolved by using the proposed DC-DC buck converter which employed a ramp generator circuit to be able to increase a switching frequency. The proposed architecture enables the settling response time of charge pump circuit within the converter to become less than 6us suitable for mobile applications. The proposed DC-DC buck converter was implemented by using 0.35 um BCDMOS process and die size was $1.37mm{\times}1.37mm$. The measurement results showed that the proposed circuit received the input of 3.7 V and generated output of 1.2 V with the output ripple voltages less than 20 mV under load currents of 100~400 mA at the fixed switching frequency of 2 MHz. The maximum efficiency of the proposed hysteretic buck converter was measured to be around 93%.

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator

  • Park, Hyung-Gu;Kim, SoYoung;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.198-206
    • /
    • 2013
  • This paper presents a wide band, fine-resolution digitally controlled oscillator (DCO) with an on-chip 3-D solenoid inductor using the 0.13 ${\mu}m$ digital CMOS process. The on-chip solenoid inductor is vertically constructed by using Metal and Via layers with a horizontal scalability. Compared to a spiral inductor, it has the advantage of occupying a small area and this is due to its 3-D structure. To control the frequency of the DCO, active capacitor and active inductor are tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO with solenoid inductor is fabricated in 0.13 ${\mu}m$ process and the die area of the solenoid inductor is 0.013 $mm^2$. The DCO tuning range is about 54 % at 4.1 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The measured phase noise of the DCO output at 5.195 GHz is -110.61 dBc/Hz at 1 MHz offset.

A 3 V 12b 100 MS/s CMOS D/A Converter for High-Speed Communication Systems

  • Kim, Min-Jung;Bae, Hyuen-Hee;Yoon, Jin-Sik;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권4호
    • /
    • pp.211-216
    • /
    • 2003
  • This work describes a 3 V 12b 100 MS/s CMOS digital-to-analog converter (DAC) for high-speed communication system applications. The proposed DAC is composed of a unit current-cell matrix for 8 MSBs and a binary-weighted array for 4 LSBs, trading-off linearity, power consumption, chip area, and glitch energy with this process. The low-glitch switch driving circuits are employed to improve linearity and dynamic performance. Current sources of the DAC are laid out separately from the current-cell switch matrix core block to reduce transient noise coupling. The prototype DAC is implemented in a 0.35 um n-well single-poly quad-metal CMOS technology and the measured DNL and INL are within ${\pm}0.75$ LSB and ${\pm}1.73$ LSB at 12b, respectively. The spurious-free dynamic range (SFDR) is 64 dB at 100 MS/s with a 10 MHz input sinewave. The DAC dissipates 91 mW at 3 V and occupies the active die area of $2.2{\;}mm{\;}{\times}{\;}2.0{\;}mm$

A Rail-to-Rail Input 12b 2 MS/s 0.18 μm CMOS Cyclic ADC for Touch Screen Applications

  • Choi, Hee-Cheol;Ahn, Gil-Cho;Choi, Joong-Ho;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제9권3호
    • /
    • pp.160-165
    • /
    • 2009
  • A 12b 2 MS/s cyclic ADC processing 3.3 Vpp single-ended rail-to-rail input signals is presented. The proposed ADC demonstrates an offset voltage less than 1 mV without well-known calibration and trimming techniques although power supplies are directly employed as voltage references. The SHA-free input sampling scheme and the two-stage switched op-amp discussed in this work reduce power dissipation, while the comparators based on capacitor-divided voltage references show a matched full-scale performance between two flash sub ADCs. The prototype ADC in a $0.18{\mu}m$ 1P6M CMOS demonstrates the effective number of bits of 11.48 for a 100 kHz full-scale input at 2 MS/s. The ADC with an active die area of $0.12\;mm^2$ consumes 3.6 m W at 2 MS/s and 3.3 V (analog)/1.8 V (digital).