• 제목/요약/키워드: Semiconducting carbon

검색결과 80건 처리시간 0.021초

Sensing performances of Semiconducting Carbon Nanomaterials based Gas Sensors Operating at Room Temperature (반도체 탄소 나노재료 기반 상온 동작용 가스센서)

  • Choi, Sun-Woo
    • Ceramist
    • /
    • 제22권1호
    • /
    • pp.96-106
    • /
    • 2019
  • Semiconducting carbon-based nanomaterials including single-walled carbon nanotubes(SWCNTs), multi-walled CNT(MWCNTs), graphene(GR), graphene oxide(GO), and reduced graphene oxide(RGO), are very promising sensing materials due to their large surface area, high conductivity, and ability to operate at room temperature. Despite of these advantages, the semiconducting carbon-based nanomaterials intrinsically possess crucial disadvantages compared with semiconducting metal oxide nanomaterials, such as relatively low gas response, irreversible recovery, and poor selectivity. Therefore, in this paper, we introduce a variety of strategies to overcome these disadvantages and investigate principle parameters to improve gas sensing performances.

Laser Ablated Carbon Thin Film from Carbon Nanotubes and Their Property Studies

  • Sharon, Maheshwar;Rusop, M.;Soga, T.;Afre, Rakesh A.
    • Carbon letters
    • /
    • 제9권1호
    • /
    • pp.17-22
    • /
    • 2008
  • A carbon nanotube (CNT) of diameter ~20 nm has been synthesized by spray pyrolysis of turpentine oil using Ni/Fe catalyst. Pellet of CNTs has been used as a target to produce semiconducting carbon thin film of band gap 1.4 eV. Presence of oxygen pressure in the pulse laser deposition (PLD) chamber helped to control the $sp^3/sp^2$ ratio to achieve the desired band gap. Results are discussed with the help of Raman spectra, SEM TEM micrographs and optical measurements suggest that semiconducting carbon thin film deposited by PLD technique has retained its nanotubes structure except that its diameter has increased from 20 nm to 150 nm.

Modulus Properties and Smoothness Measurement of Semiconducting Materials Using the DMA and SEM (DMA와 SEM을 사용한 반도전층 재료의 탄성특성과 평활도 측정)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제54권10호
    • /
    • pp.443-448
    • /
    • 2005
  • To measure modulus, damping properties and smoothness of semiconducting materials in power cable, we have investigated those of semiconducting materials showed by changing the content of carbon black. Then they were produced as sheets after pressing for 20 minutes at 180[$^{\circ}C$] with a pressure of 200[kg/cm$^{2}$]. The content of conductive carbon black was the variable, and their contents were 20, 30 and 40[wt$\%$], respectively. The modulus and tans were measured by DMA 2980. The ranges of measurement temperature were from -50[$^{\circ}C$] to 100[$^{\circ}C$] and measurement frequency was 1[Hz3. The modulus of specimens was increased according to a increment of a carbon black content. And modulus was rapidly decreased at the glass transition temperature. The tans of specimens was decreased according to a increment of a carbon black content. The smoothness was measured by JSM-6400. EEA resin from SEM measurement was best the dispersion of carbon back in base resin.

Structural Properties of EEA/Carbon nanotube and Carbon Black Composites (EEA/탄소나노튜브와 카본블랙 복합체의 구조적 특성)

  • Yang, Jong-Seok;Shin, Dong-Hoon;Lee, Kyoung-Yong;Sung, Baek-Ryong;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.218-219
    • /
    • 2006
  • To Smoothness of semiconducting materials in power cable, we have investigated those of semiconducting materials showed by changing the content of carbon black and Carbon Nanotube. Then they were produced as sheets after pressing for 20 minutes at $180^[{\circ}C]$ with a pressure of $200[kg/cm^2]$. The content of conductive carbon black and Carbon Nanotube was the variable, and their contents were 20-40[wt%] and 2-6[wt%] respectively. The smoothness was measured by JSM-6400.

  • PDF

Mechanical and Thermal Properties Changes of Nano Semiconducting Materials due to Addition of Carbon Nanotubes (탄소나노튜브를 첨가한 나노 반도전층 재료의 기계적/열적 특성 변화 연구)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Shin, Dong-Hoon;Choi, Yu-Jin;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.28-29
    • /
    • 2006
  • To improve Mechanical and Thermal Properties of semiconducting materials in power cable, we have investigated those of semiconducting materials showed by changing the content of carbon black and Carbon Nanotube. Density were measured by EW-200SG. High temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis). The dimension of measurement temperature was $0[^{\circ}C]$ J to $700[^{\circ}C]$, and rising temperature was $10[^{\circ}C/min]$. Heat degradation initiation temperature from the TGA results was decreased according to increasing the content of Carbon Nanotube. That is, heat stabilities of EVA containing the weak VA (vinyl acetate) against heat was measured the lowest. From the results of the experiment applied in this study, it is evident that a small amount of Carbon nanotube additives significantly improved the Mechanical and Thermal Properties of semiconducting materials.

  • PDF

The functions & Requirements of the Semi-Conducting layer in the power cable. (전력 케이블에서 반도전층의 역할과 요구 특성)

  • Jung, Yun-Tack;Nam, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.101-105
    • /
    • 2001
  • For high voltage XLPE power cables, semiconducting layers have been applied to prevent discharge at the interface between conductor and insulation, and/or insulation and external shielding layer. The semiconducting layers may be also effective to release electrical stress in the interface. The property of semiconducting layers are significantly related to the quality and reliability of power cables. Generally, these semiconducting layers are formed by extruding, the conductibility of the material is given by the carbon black mixed with base polymer. The life of power cables is depended on the smoothness of the interface between insulation and semiconducting layer. If the smoothness is no good, the life of power cables is shorter because the electrical stress and water tree is increased. The causes of no good smoothness are the void of the interface, the protrusions, the contaminants and impurities of the semiconducting layer. The selection and dispersion of the Carbon Black is the significant factor to determine the life of power cable in the manufacturing of semiconducting compound.

  • PDF

PTC/NTC Properties of EEA/Carbon nanotube and Carbon Black Composites (EEA/탄소나노튜브와 카본블랙 복합체의 PTC/NTC특성)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Choi, Sung-Hun;Lee, Jae-Hyeoung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.236-237
    • /
    • 2006
  • We have investigated volume resistivity showed by changing the content of Carbon nanotube and carbon black which is the component parts of semiconducting shield in underground power transmission cable. Specimens were made of sheet form with the six of specimens for measurement. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the preheated oven of both $23{\pm}1[^{\circ}C]$ and $90{\pm}1[^{\circ}C]$. The volume resistivity decreased by adding Carbon nanotube and carbon black. Also the volume resistivity had different properties because of PTC/NTC tendencies at between $23[^{\circ}C]$ and $90[^{\circ}C]$. We experimented with electric properties of semiconducting components with fewer Carbon nanotube than carbon black.

  • PDF

Formation and Dispersion Measurement in Semiconducting Materials Using the SEM and AFM (SEM과 AFM을 사용한 반도전 재료 내 카본블랙의 형태 및 분산성 측정)

  • Lee, Kyoung-Yong;Yang, Jong-Seok;Nam, Jong-Chul;Choi, Yong-Sung;Park, Dong-Ha;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.236-237
    • /
    • 2005
  • To measure surface roughness and smoothness of semiconducting materials in power cable, we have investigated the formation and growth process of carbon black showed by changing the content of carbon black. The specimens were primarily kneaded in material samples of pellet form for 5 minutes on rollers ranging between 70[$^{\circ}C$] and 100[$^{\circ}C$]. Then they were produced as sheets after pressing for 20 minutes at 180[$^{\circ}C$] with a pressure of 200[kg/cm]. The contents of conductive carbon black were the variable, and their contents were 20, 30 and 40[wt%], respectively. The surface roughness and smoothness of specimens were measured by SEM and AFM. From SEM experimental result, carbon black in specimens formed matrix as a particles. Also we showed growth process of carbon black according to an increment of the content of carbon black. From AFM experimental result, surface roughness of specimens decreased according to an increment of the content of carbon black.

  • PDF

Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis (단일벽 탄소나노튜브의 표면 전도도 조절 및 유전영동에 대한 영향)

  • Hong Seung-hyun;Jung Se-hun;Kim Young-jin;Choi Jae-bong;Baik Seunghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제30권2호
    • /
    • pp.179-186
    • /
    • 2006
  • Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single-walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. The surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimenthylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.

Application of Taguchi Methodology for Optimization of Parameters of CVD Influencing Formation of a Desired Optical Band Gap of Carbon Film

  • Mishra, D.K.;Bejoy, N.;Sharon, Maheshwar.
    • Carbon letters
    • /
    • 제6권2호
    • /
    • pp.96-100
    • /
    • 2005
  • Taguchi methodology has been applied to get an idea about the parameters related to the chemical vapour deposition technique, which influences the formation of semiconducting carbon thin film of a desired band gap. L9 orthogonal array was used for this purpose. The analysis based on Taguchi methodology suggests that amongst the parameters selected, the temperature of pyrolysis significantly controls the magnitude of band gap (46%). Sintering time has a small influence (30%) on the band gap formation and other factors have almost no influence on the band gap formation. Moreover this analysis suggests that lower temperature of pyrolysis (${\leq}$ $750^{\circ}C$) and lower time of sintering (${\leq}$ 1 h) should be preferred to get carbon thin film with the desired band gap of 1.2eV.

  • PDF