• 제목/요약/키워드: Semi-solid state

검색결과 98건 처리시간 0.025초

반응고 재료에서 점성을 고려한 고상입자의 거동예측을 위한 수치모사 해석 (Dynamic Simulation of Solid Particle Considering Change by Viscosity in Rheology Material)

  • 권기영;강충길
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.26-38
    • /
    • 2009
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology process to be performed. General plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape which is rectangle shape(square array), rectangle shape(hexagonal array), and free shape tool. In addition, the dynamics behavior compare with Okano equation to power law model which is viscosity equation.

SCR를 이용한 유도전동기의 속도제어에 관한 연구 (Speed Control of tne Induction Motor Using SCR (Trial Manufacturing of Solid-state Frequency Converter))

  • 원종수
    • 전기의세계
    • /
    • 제19권4호
    • /
    • pp.1-11
    • /
    • 1970
  • It is well known that solid-state devices like inverter and converter made by transistor and other semi-conductors are widely used for the purpose of motor speed control in industrial fields. This paper is devoted primarily to a study of Trial Manufacturing of Solid-state Frequency Converter by means of single-phase bridge-type SCR inverter. The principle of the trial product belongs to AC-DC-AC conversion system. The voltage to be impressed to the motor in case of speed control by frequency conversion method is necessary to be proportional to frequency. It also requires the frequency and voltage are independent to hte load variation. In order to meet above requests required to motor speed control., the trial product introduced the open loop system in the frequency setting and closed loop system in the voltage setting. The trial product showed the favorable performance characteristics in speed control of singlephase fractional horsepower motor from 45HZ through 80HZ.

  • PDF

전자교반을 응용한 Al6061 레오로지 소재의 단조공정 (Forging Process with Al6061 Alloy Rheology Material by Electromagnetic Stirring System)

  • 강성식;오세웅;강충길
    • 소성∙가공
    • /
    • 제16권6호
    • /
    • pp.443-446
    • /
    • 2007
  • The semi-solid process has been developed near net-shape components for kinds of methods. Thixo-forming with reheating prepared billet and rheo-forming with cooled melt until semi-solid state. Material is applied electromagnetic stirring system to slurry with aluminum 6061 alloy. An experiment has variation factors which are pressure, solid-fraction, stirring current and stirring time. The mechanical properties are compared to forge sample with to apply heat treatment T6. This study is researched function a virtual pressure and fine shape zone. Optimum pressure is found to prevent defect of porosity.

Thermoelectric Material Design in Pseudo Binary Systems of $Mg_2Si-Mg_2Ge-Mg_2Sn$ on the Powder Metallurgy Route

  • Aizawa, Tatsuhiko;Song, Renbo;Yamamoto, Atsushi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.75-76
    • /
    • 2006
  • New PM route via bulk mechanical alloying is developed to fabricate the solid solution semi-conductive materials with $Mg_2Si_{1-x}Ge_x$ and $Mg_2Si_{1-y}Sn_y$ for 0 < x, y < 1 and to investigate their thermoelectric materials. Since $Mg_2Si$ is n-type and both $Mg_2Ge$ and $Mg_2Sn$ are p-type, pn-transition takes place at the specified range of germanium content, x, and tin content, y. Through optimization of chemical composition, solid-solution type thermoelectric semi-conductive materials are designed both for n-and p-type materials.

  • PDF

Experimental study of internal solitary wave loads on the semi-submersible platform

  • Zhang, Jingjing;Liu, Yi;Chen, Ke;You, Yunxiang;Duan, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.718-733
    • /
    • 2021
  • A prediction method, based on the Morison equation as well as Froude-Krylov formula, is presented to simulate the loads acting on the columns and caissons of the semi-submersible platform induced by Internal Solitary Wave (ISW) respectively. Combined with the experimental results, empirical formulas of the drag and inertia coefficients in Morison equation can be determined as a function of the Keulegan-Carpenter (KC) number, Reynolds number (Re) and upper layer depth h1/h respectively. The experimental and calculated results are compared. And a good agreement is observed, which proves that the present prediction method can be used for analyzing the ISW-forces on the semi-submersible platform. Moreover, the results also demonstrate the layer thickness ratio has a significant effect upon the maximum horizontal forces on the columns and caissons, but both minimum horizontal and vertical forces are scarcely affected. In addition, the incoming wave directions may also contribute greatly to the values of horizontal forces exerted on the caissons, which can be ignored in the vertical force analysis.

유도가열에 따른 SKH51의 반응고 미세조직 특성 연구 (The Characteristics of Microstructure in the Semi-solid State of SKH51 at High Frequency Induction Heating)

  • 이상용
    • 열처리공학회지
    • /
    • 제25권3호
    • /
    • pp.126-133
    • /
    • 2012
  • Semi-solid forming of the high melting point alloys such as steel is a promising near-net shape forming process for decreasing manufacturing costs and increasing the quality of the final products. This paper presents the microstructure characteristics of SKH51 (high speed tool steel) during heating and holding in the mushy zone between $1233^{\circ}C$ and $1453^{\circ}C$, which has been measured by differential scanning calorimetry (DSC). The results of heating/holding experiments showed that the grain size and the liquid fraction increased gradually with temperature up to $1350^{\circ}C$. The drastic grain growth occurred at heating above $1380^{\circ}C$. The strain-induced melt-activated (SIMA) process has been applied to obtain globular grains in the billet materials. Working by mechanical upsetting and successive heating of SKH51 into the temperatures in the mushy zone resulted in globular grains due to recrystallization and partial melting.

레오로지 소재의 압축변형시 고상입자 거동의 동역학 해석 (Dynamics Simulation of Solid Particles in Compression Deformation of Rheology Material)

  • 이창수;강충길
    • 소성∙가공
    • /
    • 제15권5호
    • /
    • pp.395-401
    • /
    • 2006
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy saves. It is important to predict the deformation behavior for optimization of the forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. But rheology material has thixotropic, pseudo-plastic and shear-thinning characteristics. So, it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. General plastic or fluid dynamic analysis is not suitable for the analysis of the rheology material behavior. Recently, molecular dynamics is used for the behavior analysis of the rheology material and turned out to be suitable among several methods. In this study, molecular dynamics simulation was performed for the control of liquid segregation, forming velocity, and viscosity in compression experiment as a part of study on the analysis of rheology forming process.

반용융 알루미늄 합금의 재가열 및 Thixoforging 부품의 기계적 성질 (Reheating of Semi-Solid Aluminum Alloys and Mechanical Properties of Thixoforged Product)

  • 정홍규;강충길
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.437-448
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most imposrtant parts. To obtain a fine globular microstructure in cross section of billet, the optimal design of the induction coil for variation of alloys and specimen sizes is necessary. For the thixo-forging process the construction of the reheating data base is very important, because the reheating conditions are different for variation of SSM and billet sizes. So in this study, the optimal coil design of A356 (ALTHIX) and Aι2024 with d×ι=60×90 (mm) to obtain the globular microstructure is theoretically proposed. The suitability of an optimal coil design will be demonstrated by reheating experiments. Finally, the thixoformability of an arbitrarily shaped product is evaluated by its forming variables. The defects and mechanical properties are also investigated.

  • PDF

전자교반시 Al-7wt%Si합금의 초정입자에 미치는 유동의 영향 (The Effect of Fluid Flow on the Primary Particle of Al-7wt%Si Alloy in Electromagnetic Stirring)

  • 임성철;윤의박
    • 한국주조공학회지
    • /
    • 제16권6호
    • /
    • pp.565-575
    • /
    • 1996
  • In this study, to gain the semi-solid alloy we employed the electromagnetic rotation by a induction motor of 3-phases and 2-poles for Al-7wt%Si alloy and observed the size of primary solid particle, distribution state of primary solid particle, the degree of sphericity, and fraction of primary solid for the evaluation of its results. The size of primary solid particle increases from $98{\mu}m$ to $118{\mu}m$ as solid fraction increases from 0.2 to 0.5. The degree of sphericity increased as the solid fraction increased. Solid particles obtained from the microstructures of isothermally held sample were coarsened and the degree of sphericity was enhanced as isothermal holding time increased. However, when the sample was stirred for more than 40min, solid particles merged together and liquid phase was entrapped within the cluster of solid particles. The size of primary solid particle was not changed significantly with the variation of input voltages by 160V over which solid particles began to merge together to be a large cluster of about $170{\mu}m$ at 180V. The standard deviation and the degree of sphericity were not changed significantly with the variation of input voltage.

  • PDF

레오로지 소재의 압축 실험 시 고상입자 거동 예측을 위한 결정립 동역학 해석 (Analysis of grain size controlled rheology material dynamics for prediction of solid particle behavior during compression experiment)

  • 김현일;김우영;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.649-652
    • /
    • 2005
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as long die lift, good mechanical properties and energy saves. Rheology material has a thixotropic, pseudo-plastic and shear-thinning characteristic. Therefore, general plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. So it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. Moreover, it is important to predict the deformation behavior for optimization of net shape forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. In this study, so, molecular dynamics simulation was performed for the control of liquid segregation in compression experiment as a part of study on analysis of rheology forming process.

  • PDF