• Title/Summary/Keyword: Semi-direct

Search Result 284, Processing Time 0.028 seconds

Development of the DCPD Method Based on Finite Element Analysis for Measuring Semi-Elliptical Surface Cracks (반타원 표면균열 형상측정을 위한 유한요소 전기장 해석에 기초한 직류전위차법의 개발)

  • Kim, Yeong-Jin;Sim, Do-Jun;Choe, Jae-Bung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1147-1154
    • /
    • 2001
  • One of major problems in analyzing failure mechanism of real components is the accurate measurement of crack size and shape. The DCPD(Direct Current Potential Drop) method has been widely used for the crack measurement of a structure and finite element analysis has been used for the derivation of calibration equations, which relates the potential drop with the crack depth. In this paper, finite element analyses were performed for semi-elliptical surface cracks with various crack shapes(a/c) and crack depths(a/t). As a result, a calibration equation has been derived for the measurement of a semi-elliptical surface crack in wide plates. Analytical results are compared with experimental results to evaluate the validity and the applicability of the derived equation. The proposed method is expected to provide efficient and accurate measurement of a surface crack during crack growth.

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

A semi-analytical procedure for cross section effect on the buckling and dynamic stability of composite imperfect truncated conical microbeam

  • Zhang, Peng;Gao, Yanan;Moradi, Zohre;Ali, Yasar Ameer;Khadimallah, Mohamed Amine
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.371-388
    • /
    • 2022
  • The present study tackles the problem of forced vibration of imperfect axially functionally graded shell structure with truncated conical geometry. The linear and nonlinear large-deflection of the structure are considered in the mathematical formulation using von-Kármán models. Modified coupled stress method and principle of minimum virtual work are employed in the modeling to obtain the final governing equations. In addition, formulations of classical elasticity theory are also presented. Different functions, including the linear, convex, and exponential cross-section shapes, are considered in the grading material modeling along the thickness direction. The grading properties of the material are a direct result of the porosity change in the thickness direction. Vibration responses of the structure are calculated using the semi-analytical method of a couple of homotopy perturbation methods (HPM) and the generalized differential quadrature method (GDQM). Contradicting effects of small-scale, porosity, and volume fraction parameters on the nonlinear amplitude, frequency ratio, dynamic deflection, resonance frequency, and natural frequency are observed for shell structure under various boundary conditions.

Nonlinear P-Δ analysis of steel frames with semi-rigid connections

  • Valipour, Hamid R.;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • This paper presents the formulation for a novel force-based 1-D compound-element that captures both material and second order P-${\Delta}$ nonlinearities in steel frames. At the nodal points, the element is attached to nonlinear rotational and a translational springs which represent the flexural and axial stiffness of the connections respectively. By decomposing the total strain in the material as well as the generalised displacements of the flexible connections to their elastic and inelastic components, a secant solution strategy based on a direct iterative scheme is introduced and the corresponding solution strategy is outlined. The strain and slope of the deformed element are assumed to be small; however the equilibrium equations are satisfied for the deformed element taking account of P-${\Delta}$ effects. The formulation accuracy and efficiency is verified by some numerical examples on the nonlinear static, cyclic and dynamic analysis of steel frames.

Acrosswind aeroelastic response of square tall buildings: a semi-analytical approach based of wind tunnel tests on rigid models

  • Venanzi, I.;Materazzi, A.L.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.495-508
    • /
    • 2012
  • The present paper is focused on the prediction of the acrosswind aeroelastic response of square tall buildings. In particular, a semi-analytical procedure is proposed based on the assumption that square tall buildings, for reduced velocities corresponding to operational conditions, do not experience vortex shedding resonance or galloping and fall in the range of positive aerodynamic damping. Under these conditions, aeroelastic wind tunnel tests can be unnecessary and the response can be correctly evaluated using wind tunnel tests on rigid models and analytical modeling of the aerodynamic damping. The proposed procedure consists of two phases. First, simultaneous measurements of the pressure time histories are carried out in the wind tunnel on rigid models, in order to obtain the aerodynamic forces. Then, aeroelastic forces are analytically evaluated and the structural response is computed through direct integration of the equations of motion considering the contribution of both the aerodynamic and aeroelastic forces. The procedure, which gives a conservative estimate of the aeroelastic response, has the advantage that aeroelastic tests are avoided, at least in the preliminary design phase.

Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion (직접압출에 의한 Cu-Al 층상 복합재료 봉의 계면접합)

  • 김희남;윤여권;강원영;박성훈;이승평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.437-440
    • /
    • 2000
  • Composite material consists of more than two materials and make various kinds of composite materials by combining different single materials. Copper clad aluminum composite material is composed of Al and Cu, and it has already been put to practical use in Europe because of its economic benefits. This paper presents the interface bonding according to the variation of extrusion ratio and semi-angle die by observing the interface between Cu and Al using metal microscope. By that result, we can predict the conditions of the interface bonding according to the extruding conditions.

  • PDF

Characteristics of Environment-friendly Semi-dry Turning (환경 친화적인 세미드라이 선삭가공 특성)

  • 이종항;오종석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.385-388
    • /
    • 1997
  • As the environmental regulations become stricter, new machining technologies are being developed which takes envi ronmenta 1 aspects into account . Since cut t ing oi I has some impact on environment. many researches are being carried out to minimize the use of cutting oi I. The methods for minimizing cutting oil usage includes the following techniques: I ) Cooling of tools and work piece. 2) Useage of compressed cooling air for the removal of chip. 3) Minimal useage of environment-friendly vegetable cutt:ngoiI for lubrication between chip and tools. Since the turning machine is continuous, tools are under constant thermal load and tool wear increases as the lubricative performance degrades. Also surface roughnesses have a direct influence on turning. In order to examine the characteristics of turningmachining, this work investigates experimentally the degree of tool wear and characteristics of surface roughness in relation to machining conditions, supply methods, and cooling methods.

  • PDF

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

Shear strength behavior of crude oil contaminated sand-concrete interface

  • Mohammadi, Amirhossein;Ebadi, Taghi;Eslami, Abolfazl
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.211-221
    • /
    • 2017
  • A laboratory investigation into crude oil contaminated sand-concrete interface behavior is performed. The interface tests were carried out through a direct shear apparatus. Pure sand and sand-bentonite mixture with different crude oil contents and three concrete surfaces of different textures (smooth, semi-rough, and rough) were examined. The experimental results showed that the concrete surface texture is an effective factor in soil-concrete interface shear strength. The interface shear strength of the rough concrete surface was found higher than smooth and semi-rough concrete surfaces. In addition to the texture, the normal stress and the crude oil content also play important roles in interface shear strength. Moreover, the friction angle decreases with increasing crude oil content due to increase of oil concentration in soil and it increases with increasing interface roughness.

Determination of rebamipide in human plasma by column-switching high- performance liqiud chromatography.

  • Koung, Joung-Sun;Park, Chang-Hun;Kim, Ho-Hyun;Lee, Hee-Joo;Beom, Han-Sang
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.278.2-278.2
    • /
    • 2003
  • A column-switching semi-micro HPLC method with fluorescence detection was developed for the direct analysis of rebamipide in human plasma. Plasma was filtered through a 0.45 $\mu\textrm{m}$ membrane filter and 5 ${\mu}\ell$ of the filtrate was directly injected onto the pre-column. After elution of the plasma proteins to waste, the retained rebamipide and internal standard(ofloxacin) were transferred to a C18 semi-microcolumn (5$\mu\textrm{m}$, 150 ${\times}$2.0mm) where they were separated using acetonitrile-1.4% acetic acid (40:60, v/v) as mobile phase. (omitted)

  • PDF