• Title/Summary/Keyword: Semi-Insulating

Search Result 170, Processing Time 0.018 seconds

A study on photoreflectance in Fe-doped semi-insulating InP (Fe가 첨가된 반절연성 InP에서 Photoreflectance에 관한 연구)

  • 김인수;이정열;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 1997
  • We investigated characteristics of Fe-doped semi-insulating InP by means of photoreflectance(PR) measurement. The band gap energy($E_0$) and broadening parameter($\Gamma$) from PR signals at 300K are 1.336 eV and 11.2 meV, respectively. As the temperature is decreased from 300 to 80 K, PR signals are varied from an overlapped shape of exciton and 2-dimensional band gap transitions(300 K) to that of exciton transition(80 K). We calculated Varshni coefficient($\alpha=0.94\pm$0.07 meV/K, $\beta=587\pm$35.2 K) and Bose-Einstein coefficient ($a_B=33.6{\pm}2.02meV$ , $\theta=165\pm$33K). After annealing of isothermal and isochronism crystallinity of InP is found to be excellent when annealed at $300^{\circ}C$ for 10~20 min, qualitatively.

  • PDF

Fabrication of a Depletion mode n-channel GaAs MOSFET using $Al_2O_3$ as a gate insulator ($Al_2O_3$ 절연막을 게이트 절연막으로 이용한 공핍형 n-채널 GaAs MOSFET의 제조)

  • Jun, Bon-Keun;Lee, Suk-Hyun;Lee, Jung-Hee;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • In this paper, we present n-channel GaAs MOSFET having $Al_2O_3$ as gate in insulator fabricated on a semi-insulating GaAs substrate. 1 ${\mu}$m thick undoped GaAs buffer layer, 1500 ${\AA}$ thick n-type GaAs, undoped 500 ${\AA}$ thick AlAs layer, and 50 ${\AA}$ GaAs caplayer were subsequently grown by molecular beam epitaxy(MBE) on (100) oriented semi-insulating GaAs substrate oxidized. When it was wet oxidized, AlAs layer was fully converted $Al_2O_3$. The I-V, $g_m$, breakdown charateristics of the fabricated GaAs MOSFET showed that wet thermal oxidation of AlAs/GaAs epilayer/S${\cdot}$I GaAs was suitable in realizing depletion mode GaAs MOSFET.

  • PDF

Infrared Imaging and a New Interpretation on the Reverse Contrast Images in GaAs Wafer (GaAs 웨이퍼의 적외선 영상기법 및 콘트라스트 반전 영상에 대한 새로운 해석)

  • Kang, Seong-jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2085-2092
    • /
    • 2016
  • One of the most important properties of the IC substrate is that it should be uniform over large areas. Among the various physical approaches of wafer defect characterization, special attention is to be payed to the infrared techniques of inspection. In particular, a high spatial resolution, near infrared absorption method has been adopted to directly observe defects in semi-insulating GaAs. This technique, which relies on the mapping of infrared transmission, is both rapid and non-destructive. This method demonstrates in a direct way that the infrared images of GaAs crystals arise from defect absorption process. A new interpretation is presented for the observed reversal of contrast in the infrared absorption of nonuniformly distributed deep centers, related to EL2, in semi-insulating GaAs. The low temperature photoquenching experiment has demonstrated in a direct way that the contrast inverse images of GaAs wafers arise from both absorption and scattering mechanisms rather than charge re-distribution or local variation of bandgap.

Self-Heating Effects in β-Ga2O3/4H-SiC MESFETs (β-Ga2O3/4H-SiC MESFETs에서의 Self-Heating)

  • Kim, Min-Yeong;Seo, Hyun-Su;Seo, Ji-Woo;Jung, Seung-Woo;Lee, Hee-Jae;Byun, Dong-Wook;Shin, Myeong-Cheol;Schweitz, Michael A.;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Despite otherwise advantageous properties, the performance and reliability of devices manufactured in β-Ga2O3 on semi-insulating Ga2O3 substrates may degrade because of poorly mitigated self-heating, which results from the low thermal conductivity of Ga2O3 substrates. In this work, we investigate and compare self-heating and device performance of β-Ga2O3 MESFETs on substrates of semi-insulating Ga2O3 and 4H-SiC. Electron mobility in β-Ga2O3 is negatively affected by increasing lattice temperature, which consequently also negatively influences device conductance. The superior thermal conductivity of 4H-SiC substrates resulted in reduced β-Ga2O3 lattice temperatures and, thus, mitigates MESFET drain current degradation. This, in turn, allows practically reduced device dimensions without deteriorating the performance and improved device reliability.

The effect of PVT process parameters on the resistance of HPSI-SiC crystal (PVT 공법의 공정 변수가 고순도 반절연 SiC 단결정의 저항에 미치는 영향)

  • Jun-Hyuck Na;Min-Gyu Kang;Gi-Uk Lee;Ye-Jin Choi;Mi-Seon Park;Kwang-Hee Jung;Gyu-Do Lee;Woo-Yeon Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.41-47
    • /
    • 2024
  • In this study, the resistance characteristics of semi-insulating SiC single crystals grown using the PVT method were investigated, considering the purity level of SiC source powders used in PVT growth and the cooling procedure after crystal growth. Two β-SiC powders with different purities were employed, and the cooling rate after growth was adjusted to achieve various resistance values. 4-inch HPSI-SiC ingots were grown using the PVT method, utilizing SiC powders with low nitrogen concentration and relatively high nitrogen concentration. These ingots were then subjected to different cooling procedures to modify the cooling rate. Transmission/absorption spectra and crystal quality of the grown crystals were analyzed through UV/VIs/NIR spectroscopy and X-ray rocking curve analysis, respectively. Additionally, electrical properties were investigated through non-contact resistivity analysis to identify the dominant factors influencing resistivity properties.

Quantitative Immunoassay for Polychlorinated Biphenyl Compounds in Electrical Insulating Oils

  • Kim In Soo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.119-127
    • /
    • 2000
  • The development and performance of a competitive indirect immunoassay for the quantitative measurement of polychlorinated biphenyl compounds in insulating oils is presented. Reagent preparation and the assay characterisation, optimisation and validation steps are described. The dynamic range of the assay for Aroclors 1254 and 1260 in methanol was $50-800 {\mu}g\;ml^{-1}$ with $50\%$ signal inhibition values of 217 and $ 212 {\mu}g\;ml^{-1}$ respectively. Impending legislation in the UK is likely to decree that oils containing $ >50 {\mu}g\;ml^{-1}$ PCB be considered contaminated. Assay sensitivity increased with the degree of PCB chlorination. The assay of structurally related compounds of environmental concern yielded cross-reactivity values of under $0.6\%$. The immunoassay proved reliable for the analysis of transformer oils containing $>70{\mu}g\;ml^{-1}$ PCB, but over-estimated PCB levels in oils containing $<20{\mu}g\;ml^{-1}$ of the analyte with the oils requiring pre-treatment using either solid-phase extraction techniques or washing with KOH-ethanol/sulphuric acid to remove matrix interferents. The analytical performance of the assay was compared against a commercially available semi-quantitative immunoassay kit for PCBs in soil and water.

  • PDF

DC and Impulse Insulation Characteristics of PPLP for HTS DC Cable (고온초전도 직류 케이블용 절연재료인 PPLP의 직류 및 임펄스 절연 특성)

  • Kim, Woo-Jin;Pang, Man-Sik;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.545-549
    • /
    • 2013
  • To realize the high-Tc superconducting (HTS) DC cable system, it is important to study not only high current capacity and low loss of conductor but also optimum electrical insulation at cryogenic temperature. A model HTS DC cable system consists of a HTS conductor, semi-conductor, cooling system and insulating materials. Polypropylene laminated paper (PPLP) has been widely adopted as insulating material for HTS machines. However, the fundamental insulation characteristics of PPLP for the development of HTS DC cable have not been revealed satisfactorily until now. In this paper, we will discuss mainly on the breakdown characteristics of 3 sheets PPLP in liquid nitrogen ($LN_2$). The characteristics of the diameter, location of butt-gap, distance between butt-gap length, pressure effect, polarity effect under DC and impulse voltage were studied. Also, the DC polarity reversal breakdown voltage of mini-model cable was measured in $LN_2$ under 0.4 MPa.

Low-dislocation-density large-diameter GaAs single crystal grown by vertical Bridgman method

  • Kawase, Tomohiro;Tatsumi, Masami;Fujita, Keiichiro
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.535-541
    • /
    • 1999
  • Low-dislocation-density large-diameter GaAs single crystals with low-residual-strain have been strongly required. We have developed dislocation-free 3-inch Si doped GaAs crystals for photonic devices, and low-dislocation-density low-residual-strain 4-inch to 6-inch semi-insulating GaAs crystals for electronic devices by Vertical Bridgman(VB) technique. We confirmed that VB substrates with low-residual-strain have higher resistance against slip-line generation during MBE process. VB-GaAs single crystals show uniform radial profile of resistivity reflecting to the flat solid-liquid interface during the crystal growth. Uniformity of micro-resistivity of VB-GaAs substrate is much better than of the LEC-GaAs substrate, which is due to the low-dislocation-density of VB-GaAs single crystals.

  • PDF

A Method for Evaluating the Temperature Coefficient of a Compound Semiconductor Energy Gap by Infrared Imaging Technique (적외선 영상기법에 의한 화합물 반도체 에너지갭의 온도계수 측정 방법)

  • Kang, Seong-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.338-346
    • /
    • 2001
  • An infrared imaging method in which direct measurement of energy gap variations can be achieved by digital image processing is proposed. This method allows economic and easy evaluation of the temperature coefficients of a semiconductor energy gap. The key components of the method are a polychromator, a computer equipped with a frame grabber and a variable temperature cryostat. Tentative experimentation conducted on LEC grown semi-insulating GaAs has resulted in a fairly good agreement with the theoretical model. This proposed method could be applicable for most compound semiconductors.

  • PDF

Characterization of SOI Wafers Fabricated by a Modified Direct Bonding Technology

  • Kim, E.D.;Kim, S.C.;Park, J.M.;Kim, N.K.;Kostina, L.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.47-51
    • /
    • 2000
  • A modified direct bonding technique employing a wet chemical deposition of $SiO_2$ film on a wafer surface to be bonded is proposed for the fabrication of Si-$SiO_2$-Si structures. Structural and electrical quality of the bonded wafers is studied. Satisfied insulating properties of interfacial $SiO_2$ layers are demonstrated. Elastic strain caused by surface morphology is investigated. The diminution of strain in the grooved structures is semi-quantitatively interpreted by a model considering the virtual defects distributed over the interfacial region.

  • PDF