• Title/Summary/Keyword: Semi-Active Variable Damper

Search Result 45, Processing Time 0.023 seconds

Seismic performance-based optimal design approach for structures equipped with SATMDs

  • Mohebbi, Mohtasham;Bakhshinezhad, Sina
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.95-107
    • /
    • 2022
  • This paper introduces a novel, rigorous, and efficient probabilistic methodology for the performance-based optimal design (PBOD) of semi-active tuned mass damper (SATMD) for seismically excited nonlinear structures. The proposed methodology is consistent with the modern performance-based earthquake engineering framework and aims to design reliable control systems. To this end, an optimization problem has been defined which considers the parameters of control systems as design variables and minimization of the probability of exceeding a targeted structural performance level during the lifetime as an objective function with a constraint on the failure probability of stroke length damage state associated with mass damper mechanism. The effectiveness of the proposed methodology is illustrated through a numerical example of performance analysis of an eight-story nonlinear shear building frame with hysteretic bilinear behavior. The SATMD with variable stiffness and damping have been designed separately with different mass ratios. Their performance has been compared with that of uncontrolled structure and the structure controlled with passive TMD in terms of probabilistic demand curves, response hazard curves, fragility curves, and exceedance probability of performance levels during the lifetime. Numerical results show the effectiveness, simplicity, and reliability of the proposed PBOD method in designing SATMD with variable stiffness and damping for the nonlinear frames where they have reduced the exceedance probability of the structure up to 49% and 44%, respectively.

Development of Practical Semi-active Suspension Control System

  • Takahashi, Hideaki;Zhang, Feifei;Mishima, Kiyoshi;Ito, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.278-281
    • /
    • 2003
  • The focus of this research is to realize the function which is equivalent to the active suspension system, with controlling semi-active suspension through the attenuation of power variable damper in lower cost and smaller energy. Actually some semi-active suspension systems have been adopted, but they are not sufficient in performance. The authors intended to develop more effective and practical system and applied the optimal control technique. The results of experiments with practical suspension system showed a degree of improvement of comfortableness.

  • PDF

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

Active Dynamic behavior Control of Vehicle by Using Semi-intelligent Suspension System (반지능형 현가시스템에 의한 차량의 능동적인 동적거동제어)

  • 김대원;배준영;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.15-21
    • /
    • 1998
  • Mostly a ride comfort and handling performance of vehicle is influenced by dynamic behavior control of vehicle. We are focusing on development of a semi-intelligent suspension system with continuously variable damper(HS-SH type). only using absolute velocity of sprung mass without using the relative velocity besides having lower system prices and a little energy requirement. In this paper, the system is realized in consideration to control strategy (sky-hook control, hybrid filter, etc.) and has been proved to have improvement of behavior control of vehicle by quarter car and Vehicle test, respectively.

  • PDF

Experiment of an ABS-type control strategy for semi-active friction isolation systems

  • Lu, Lyan-Ywan;Lin, Ging-Long;Lin, Chen-Yu
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.501-524
    • /
    • 2011
  • Recent studies have discovered that a conventional passive isolation system may suffer from an excessive isolator displacement when subjected to a near-fault earthquake that usually has a long-period velocity pulse waveform. Semi-active isolation using variable friction dampers (VFD), which requires a suitable control law, may provide a solution to this problem. To control the VFD in a semi-active isolation system more efficiently, this paper investigates experimentally the possible use of a control law whose control logic is similar to that of the anti-lock braking systems (ABS) widely used in the automobile industry. This ABS-type controller has the advantages of being simple and easily implemented, because it only requires the measurement of the isolation-layer velocity and does not require system modeling for gain design. Most importantly, it does not interfere with the isolation period, which usually decides the isolation efficiency. In order to verify its feasibility and effectiveness, the ABS-type controller was implemented on a variable-friction isolation system whose slip force is regulated by an embedded piezoelectric actuator, and a seismic simulation test was conducted for this isolation system. The experimental results demonstrate that, as compared to a passive isolation system with various levels of added damping, the semi-active isolation system using the ABS-type controller has the better overall performance when both the far-field and the near-fault earthquakes with different PGA levels are considered.

Smart tuned mass dampers: recent developments

  • Nagarajaiah, Satish;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.173-176
    • /
    • 2014
  • This special issue focuses on Smart Tuned Mass Dampers (STMD) that are either active or smart or semi-active in nature. Active tuned mass dampers or active mass dampers have found wide acceptance and have been implemented in many tall buildings and long span bridges. Recently researchers have developed a new class of smart tuned mass dampers using either variable stiffness and/or variable damping to effect the change in instantaneous frequency and damping. Since tuning plays a central role in STMDs it is of great current interest thus the topic of this special issue. Discussions of recent active and smart TMD implementations in tall buildings and bridges are also included.

Design of MR Fulid Dampers for Semi-Active Control (반능동 제어를 위한 MR 유체 댐퍼의 설계)

  • 구자인
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.496-500
    • /
    • 2000
  • 대형 구조물의 진동제어를 위하여 MR 유체 댐퍼를 사용한 반능동 제어기법에 대하여 연구하였다. 기존에 많이 사용되고 있는 수동제어기법은 일단 제어장치를 설치한 후에는 구조물에 실제로 작용하고 있는 외부 하중의 현재 특성에 대해서 적절히 반응할 수 없다는 제한을 가지고 있으며, 이를 극복하기 위하여 연구되어온 능동제어기법은 구조물이 진동을 감소시키기 위하여 구조물에 직접적으로 가해지는 커다란 제어력을 요구하며, 이로 인해 경우에 따라서는 불안정한 상태가 유발될 수도 있다는 점이 단점으로 지적되고 있다. 최근에 Spencer 등은 반능동 제어기법을 제안하였는데, 이는 수동제어장치의 제어특성을 On-Line 으로 조절하는 방식으로서 제어 가능한 수동제어기법으로도 불리운다. 구조물의 진동제어에 필요한 제어력이, 특수한 제어기구에서 발생되는 인위적인 힘이 아니라, 적절한 구조부재에서 발생되는 자연적인 부재력이므로, 무엇보다 강인하고 신뢰할 수 있는 제어기법이며, 이때 제어장치의 구조적 특성을, 측정된 구조물의 응답에 맞추어 적절히 조절함으로써 다양한 외부하중에 대해 보다 효율적인 제어가 이루어질 수 있도록 한 방법이다. 반능동제어를 위한 제어기로서는 Variable Orifice Dampers, Friction Controllable Isolators, Variable Stiffness Devices, Electro-Rheological (ER) Fluid Damper, Magneto-Rheological(MR) Fluid Damper등이 제안되고 있으며, 본 논문에서는 반응속도가 빠르고, 적은 파워만을 요구하며, 커다란 제어력을 낼 수 있는 MR Damper를 사용하여 지진하중을 받는 구조물의 반능동 제어게 대하여 연구하였다. MR Damper의 특성이 비선형이므로 이에 적합한 Sliding Mode Fuzzy Control(SMFC)기법을 사용하였으며 이때 SMFC 의 최적 설계를 위하여 Genetic Algorithm을 적용하였다. 제안된 제어기법의 실제 적용성을 검증하기 위하여 기존이 제어결과와 비교 검토하였으며, 그 결과로부터 MR Damper를 사용한 반능동 제어기법이 구조물의 진동제어에 매우 효과적임을 확인할 수 있었다.

  • PDF

Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization

  • Chen, Genda;Garrett, Gabriel T.;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.539-556
    • /
    • 2004
  • In this paper, the design, fabrication and characterization of a piezoelectric friction damper are presented. It was sized with the proposed practical procedure to minimize the story drift and floor acceleration of an existing 1/4-scale, three-story frame structure under both near-fault and far-field earthquakes. The design operation friction force in kip was numerically determined to range from 2.2 to 3.3 times the value of the peak ground acceleration in g (gravitational acceleration). Experimental results indicated that the load-displacement loop of the damper is nearly rectangular in shape and independent of the excitation frequency. The coefficient of friction of the damper is approximately 0.85 when the clamping force on the damper is above 400 lbs. It was found that the friction force variation of the damper generated by piezoelectric actuators with 1000 Volts is approximately 90% of the expected value. The properties of the damper are insensitive to its ambient temperature and remain almost the same after being tested for more than 12,000 cycles.

Development and Evaluation of a Hybrid Damper for Semi-active Suspension (반능동 현가장치의 하이브리드형 댐퍼 개발에 관한 연구)

  • Jin, Chul Ho;Yoon, Young Won;Lee, Jae Hak
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.38-49
    • /
    • 2018
  • This research describes the development model and testing of a hybrid damper which can be applicable to a vehicle suspension. The hybrid damper is devised to improve the performance of a conventional passive oil damper using a magneto-rheological (MR) accumulator which consists of a gas accumulator and a MR device. The level of damping is continuously variable by the means of control in the applied current in a MR device fitted to a floating piston which separates the gas and the oil chamber. A simple MR device is used to resist the movement of floating piston. At first a mathematical model which describes all flows within the conventional oil damper is formulated, and then a small MR device is also devised and adopted to a mathematical model to characterize the performance of the device.

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension System: Implementation and Experiment

  • Tae, Hong-Kyung;Chul, Sohn-Hyun;Ryong, Jung-Jae;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.4-178
    • /
    • 2001
  • In this paper a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype ...

  • PDF