• Title/Summary/Keyword: Semi active

Search Result 651, Processing Time 0.026 seconds

Application of TMD for Seismic Response Control of Dome Structure (돔 구조물의 지진응답 제어를 위한 TMD의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • Vibration control devices are classified into passive, semi-active and active device. TMD(Tuned Mass Damper) is one of the passive control device that is mainly used to reduce vibration level of building structure and bridge structure. In this study, the application of passive tuned mass damper(TMD) to seismic response control of dome structures has been investigated. Because star dome structure has primary characteristics of dome structures, star dome structure was used as an example dome structure that is subjected to horizontal or vertical seismic loads. From this numerical analysis, it is shown that seismic response are influenced by vibration modes and it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Design and experimental characterization of a novel passive magnetic levitating platform

  • Alcover-Sanchez, R.;Soria, J.M.;Perez-Aracil, J.;Pereira, E.;Diez-Jimenez, E.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.499-512
    • /
    • 2022
  • This work proposes a novel contactless vibration damping and thermal isolation tripod platform based on Superconducting Magnetic Levitation (SML). This prototype is suitable for cryogenic environments, where classical passive, semi active and active vibration isolation techniques may present tribological problems due to the low temperatures and/or cannot guarantee an enough thermal isolation. The levitating platform consists of a Superconducting Magnetic Levitation (SML) with inherent passive static stabilization. In addition, the use of Operational Modal Analysis (OMA) technique is proposed to characterize the transmissibility function from the baseplate to the platform. The OMA is based on the Stochastic Subspace Identification (SSI) by using the Expectation Maximization (EM) algorithm. This paper contributes to the use of SSI-EM for SML applications by proposing a step-by-step experimental methodology to process the measured data, which are obtained with different unknown excitations: ambient excitation and impulse excitation. Thus, the performance of SSI-EM for SML applications can be improved, providing a good estimation of the natural frequency and damping ratio without any controlled excitation, which is the main obstacle to use an experimental modal analysis in cryogenic environments. The dynamic response of the 510 g levitating platform has been characterized by means of OMA in a cryogenic, 77 K, and high vacuum, 1E-5 mbar, environment. The measured vertical and radial stiffness are 9872.4 N/m and 21329 N/m, respectively, whilst the measured vertical and radial damping values are 0.5278 Nm/s and 0.8938 Nm/s. The first natural frequency in vertical direction has been identified to be 27.39 Hz, whilst a value of 40.26 Hz was identified for the radial direction. The determined damping values for both modes are 0.46% and 0.53%, respectively.

Design of MR Fulid Dampers for Semi-Active Control (반능동 제어를 위한 MR 유체 댐퍼의 설계)

  • 구자인
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.496-500
    • /
    • 2000
  • 대형 구조물의 진동제어를 위하여 MR 유체 댐퍼를 사용한 반능동 제어기법에 대하여 연구하였다. 기존에 많이 사용되고 있는 수동제어기법은 일단 제어장치를 설치한 후에는 구조물에 실제로 작용하고 있는 외부 하중의 현재 특성에 대해서 적절히 반응할 수 없다는 제한을 가지고 있으며, 이를 극복하기 위하여 연구되어온 능동제어기법은 구조물이 진동을 감소시키기 위하여 구조물에 직접적으로 가해지는 커다란 제어력을 요구하며, 이로 인해 경우에 따라서는 불안정한 상태가 유발될 수도 있다는 점이 단점으로 지적되고 있다. 최근에 Spencer 등은 반능동 제어기법을 제안하였는데, 이는 수동제어장치의 제어특성을 On-Line 으로 조절하는 방식으로서 제어 가능한 수동제어기법으로도 불리운다. 구조물의 진동제어에 필요한 제어력이, 특수한 제어기구에서 발생되는 인위적인 힘이 아니라, 적절한 구조부재에서 발생되는 자연적인 부재력이므로, 무엇보다 강인하고 신뢰할 수 있는 제어기법이며, 이때 제어장치의 구조적 특성을, 측정된 구조물의 응답에 맞추어 적절히 조절함으로써 다양한 외부하중에 대해 보다 효율적인 제어가 이루어질 수 있도록 한 방법이다. 반능동제어를 위한 제어기로서는 Variable Orifice Dampers, Friction Controllable Isolators, Variable Stiffness Devices, Electro-Rheological (ER) Fluid Damper, Magneto-Rheological(MR) Fluid Damper등이 제안되고 있으며, 본 논문에서는 반응속도가 빠르고, 적은 파워만을 요구하며, 커다란 제어력을 낼 수 있는 MR Damper를 사용하여 지진하중을 받는 구조물의 반능동 제어게 대하여 연구하였다. MR Damper의 특성이 비선형이므로 이에 적합한 Sliding Mode Fuzzy Control(SMFC)기법을 사용하였으며 이때 SMFC 의 최적 설계를 위하여 Genetic Algorithm을 적용하였다. 제안된 제어기법의 실제 적용성을 검증하기 위하여 기존이 제어결과와 비교 검토하였으며, 그 결과로부터 MR Damper를 사용한 반능동 제어기법이 구조물의 진동제어에 매우 효과적임을 확인할 수 있었다.

  • PDF

Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount (통합제진마운트용 MR 댐퍼의 실험적 성능 평가)

  • Seong, Min-Sang;Choi, Seung-Bok;Kim, Cheol-Ho;Lee, Hong-Ki;Baek, Jae-Ho;Han, Hyun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.65-70
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological (MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

  • PDF

Application of simple adaptive control to an MR damper-based control system for seismically excited nonlinear buildings

  • Javanbakht, Majd;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1251-1267
    • /
    • 2016
  • In this paper, Simple Adaptive Control (SAC) is used to enhance the seismic response of nonlinear tall buildings based on acceleration feedback. Semi-active MR dampers are employed as control actuator due to their reliability and well-known dynamic models. Acceleration feedback is used because of availability, cost-efficiency and reliable measurements of acceleration sensors. However, using acceleration feedback in the control loop causes the structure not to apparently meet some requirements of the SAC algorithm. In addition to defining an appropriate SAC reference model and using inherently stable MR dampers, a modification in the original structure of the SAC is proposed in order to improve its adaptability to the situation in which the plant does not satisfy the algorithm's stability requirements. To investigate the performance of the developed control system, a numerical study is conducted on the benchmark 20-story nonlinear building and the responses of the SAC-controlled structure are compared to an $H_2/LQG$ clipped-optimal controller under the effect of different seismic excitations. As indicated by the results, SAC controller effectively reduces the story drifts and hence the seismically-induced damage throughout the structural members despite its simplicity, independence of structural parameters and while using fewer number of dampers in contrast with the $H_2/LQG$ clipped-optimal controller.

The Study of Textbook in Eco Friendly Clothing-related Contents - Based on Middle School "Technology.Home Economics" 2 - (친환경 의생활 영역에 관한 교과서분석 - 중학교 "기술.가정" 2 교과서를 중심으로 -)

  • Lee, Hee-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.1
    • /
    • pp.117-130
    • /
    • 2015
  • As environmental issues have become a worldwide concern after the 20th century, the idea and the term of 'green growth development' has become familiar to the public. After 2008, the green growth development dramatically became an important ideology in Korea; thus industries, studies and product investments in relation are in active progress. Following the trend, the latter major unit of the middle school textbook "Technology & Home Economics" was named the revision of elementary, middle and high school textbooks in 2009. The learning goal of 'green' or 'eco-friendly' of the revised edition of the textbook will guide the middle school students to have better understanding of the issues of clothing habits and the environment. Furthermore, students will be able to apply the 'green' concepts in their real life and put eco-friendly clothing habits into action. Thus, the practice of effective learning will depend on the quality of the current issue of the textbook. Therefore this study analyzes the eco-friendly contents of the semi-unit from 7 different textbooks and presents an example of textbook production to the preliminary teacher of home economics.

  • PDF

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR 댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Boon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.460-465
    • /
    • 2008
  • This paper proposes a new type of MR (magentorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is establishes by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

  • PDF

Modeling and Control of an Engine Mount Using ER Fluids and Piezoactuators (ER 유체와 압전작동기를 이용한 엔진마운트의 모델링 및 제어)

  • Choi, Seung-Hoon;Choi, Young-Tai;Choi, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.500-510
    • /
    • 1996
  • This paper presents a new prototype of an engine mount for a passenger vehicle featuring ER(elector-rheological) fluids and piezoactuators. Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts have their own functional aims on the limited frequency band in the board engine operating frequency range. However, the proposed engine mount covers all frequency range of the engine operation. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently domain, the ER fluid is activated upon imposing electric field for vibration isolation while the piezoactuator. Computer control electric fluid for the ER fluid H.inf. cotrol technique is adopted for the piezoactuator. Computer simulation is undertaken in order to demonstrate isolation efficiency of the engine mount over wide operating frequency range.

Semi-Automatic Management of Classification Scheme with Interoperability (상호운용적 분류체계 관리를 위한 반자동 분류체계 관리방안)

  • Lee, Won-Goo;Shin, Sung-Ho;Kim, Kwang-Young;Jeon, Do-Heon;Yoon, Hwa-Mook;Sung, Won-Kyung;Lee, Min-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.466-474
    • /
    • 2011
  • Under the knowledge-based economy in 21C, the convergence and complexity in science and technology are being more active. Therefore, we have science and technology are classified properly, make not easy to construct the system to new next generation area. Thus we suggest the systematic solution method to flexibly extend classification scheme in order for content management and service organizations. In this way, we expect that the difficult of classification scheme management is minimized and the expense of it is spared.