• 제목/요약/키워드: Semantics Accumulation

검색결과 1건 처리시간 0.018초

영상에 대한 Semantics 축적이 가능한 Relevance Feedback (Semantics Accumulation-Enabled Relevance Feedback)

  • 오상욱;설상훈;정민교
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1306-1313
    • /
    • 2005
  • Relevance Feedback(RF)은 사용자의 인지적 피드백(perceptual feedback)을 사용하는 영상 검색 기법 중의 하나로서, 사용자 피드백을 통해 얻게 되는 적합성 정보(relevance information)를 이용하여 사용자 질의(query)를 점진적으로 구체화하게 된다. 그러나, 기존 RF 기법에서는 이러한 적합성 정보가 매우 유용한 정보임에도 불구하고, 검객이 끝나는 순간 없애버리고 만다. 그래서, 본 논문에서는 사용자의 인지적 피드백 정보를 버리지 않고, 저장하는 새로운 개념의 RF를 제안한다. 새로 제안된 RF는 시간의 흐름에 따라 축적되어 저장된 상위 레벨의 적합성 정보(high-level relevance information)를 하위 레벨의 특징벡터(low-level feature vectors)와 동적으로(dynamically) 결합하여 사용함으로써, 검색의 효율성을 크게 향상시킨다. 제안 방법의 우수성을 입증하기 위해 다양한 실험 결과도 제시한다.

  • PDF