• Title/Summary/Keyword: Semantic features

Search Result 378, Processing Time 0.03 seconds

MSFM: Multi-view Semantic Feature Fusion Model for Chinese Named Entity Recognition

  • Liu, Jingxin;Cheng, Jieren;Peng, Xin;Zhao, Zeli;Tang, Xiangyan;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1833-1848
    • /
    • 2022
  • Named entity recognition (NER) is an important basic task in the field of Natural Language Processing (NLP). Recently deep learning approaches by extracting word segmentation or character features have been proved to be effective for Chinese Named Entity Recognition (CNER). However, since this method of extracting features only focuses on extracting some of the features, it lacks textual information mining from multiple perspectives and dimensions, resulting in the model not being able to fully capture semantic features. To tackle this problem, we propose a novel Multi-view Semantic Feature Fusion Model (MSFM). The proposed model mainly consists of two core components, that is, Multi-view Semantic Feature Fusion Embedding Module (MFEM) and Multi-head Self-Attention Mechanism Module (MSAM). Specifically, the MFEM extracts character features, word boundary features, radical features, and pinyin features of Chinese characters. The acquired font shape, font sound, and font meaning features are fused to enhance the semantic information of Chinese characters with different granularities. Moreover, the MSAM is used to capture the dependencies between characters in a multi-dimensional subspace to better understand the semantic features of the context. Extensive experimental results on four benchmark datasets show that our method improves the overall performance of the CNER model.

A Study of Intrinsic and Extrinsic Semantic Features of Korean Nouns: Focusing on the Categories of Grains, Fruits and Vegetables (한국어 명사의 내재적/외재적 의미특징 연구: 곡식, 과일, 채소 범주를 중심으로)

  • 정영철;이정모
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.1
    • /
    • pp.43-67
    • /
    • 2004
  • Using qualitative research methodology, this study has investigated the semantic features of 39 nouns, which are classified into the categories of grains, fruits and vegetables. A survey has been conducted with a substantial number of undergraduate students, who were asked to describe any semantic features they associated with the lexical items within the three categories. The analysis of the survey data shows that the concepts of examples of fruits are defined predominantly by intrinsic semantic features, while those of grains and vegetables are defined noticeably by extrinsic semantic features rather than intrinsic ones. Intrinsic semantic features are any properties inherent in an object itself and extrinsic semantic features are defined as any properties constructed by association with other objects or personal experiences in a certain situation. However, this study does not maintain that either intrinsic or extrinsic semantic features solely define the concepts of the examples of the three categories. Instead, it concludes that both kinds of semantic features are involved in the representation of the concepts of those vocabularies, with intrinsic features salient in the category of fruits and extrinsic features salient in the categories of gains and vegetables.

  • PDF

Development of a Deep Learning Model for Detecting Fake Reviews Using Author Linguistic Features (작성자 언어적 특성 기반 가짜 리뷰 탐지 딥러닝 모델 개발)

  • Shin, Dong Hoon;Shin, Woo Sik;Kim, Hee Woong
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.01-23
    • /
    • 2022
  • Purpose This study aims to propose a deep learning-based fake review detection model by combining authors' linguistic features and semantic information of reviews. Design/methodology/approach This study used 358,071 review data of Yelp to develop fake review detection model. We employed linguistic inquiry and word count (LIWC) to extract 24 linguistic features of authors. Then we used deep learning architectures such as multilayer perceptron(MLP), long short-term memory(LSTM) and transformer to learn linguistic features and semantic features for fake review detection. Findings The results of our study show that detection models using both linguistic and semantic features outperformed other models using single type of features. In addition, this study confirmed that differences in linguistic features between fake reviewer and authentic reviewer are significant. That is, we found that linguistic features complement semantic information of reviews and further enhance predictive power of fake detection model.

Video Captioning with Visual and Semantic Features

  • Lee, Sujin;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1318-1330
    • /
    • 2018
  • Video captioning refers to the process of extracting features from a video and generating video captions using the extracted features. This paper introduces a deep neural network model and its learning method for effective video captioning. In this study, visual features as well as semantic features, which effectively express the video, are also used. The visual features of the video are extracted using convolutional neural networks, such as C3D and ResNet, while the semantic features are extracted using a semantic feature extraction network proposed in this paper. Further, an attention-based caption generation network is proposed for effective generation of video captions using the extracted features. The performance and effectiveness of the proposed model is verified through various experiments using two large-scale video benchmarks such as the Microsoft Video Description (MSVD) and the Microsoft Research Video-To-Text (MSR-VTT).

A Framework for Semantic Interpretation of Noun Compounds Using Tratz Model and Binary Features

  • Zaeri, Ahmad;Nematbakhsh, Mohammad Ali
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.743-752
    • /
    • 2012
  • Semantic interpretation of the relationship between noun compound (NC) elements has been a challenging issue due to the lack of contextual information, the unbounded number of combinations, and the absence of a universally accepted system for the categorization. The current models require a huge corpus of data to extract contextual information, which limits their usage in many situations. In this paper, a new semantic relations interpreter for NCs based on novel lightweight binary features is proposed. Some of the binary features used are novel. In addition, the interpreter uses a new feature selection method. By developing these new features and techniques, the proposed method removes the need for any huge corpuses. Implementing this method using a modular and plugin-based framework, and by training it using the largest and the most current fine-grained data set, shows that the accuracy is better than that of previously reported upon methods that utilize large corpuses. This improvement in accuracy and the provision of superior efficiency is achieved not only by improving the old features with such techniques as semantic scattering and sense collocation, but also by using various novel features and classifier max entropy. That the accuracy of the max entropy classifier is higher compared to that of other classifiers, such as a support vector machine, a Na$\ddot{i}$ve Bayes, and a decision tree, is also shown.

Sensor Fusion-Based Semantic Map Building (센서융합을 통한 시맨틱 지도의 작성)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.277-282
    • /
    • 2011
  • This paper describes a sensor fusion-based semantic map building which can improve the capabilities of a mobile robot in various domains including localization, path-planning and mapping. To build a semantic map, various environmental information, such as doors and cliff areas, should be extracted autonomously. Therefore, we propose a method to detect doors, cliff areas and robust visual features using a laser scanner and a vision sensor. The GHT (General Hough Transform) based recognition of door handles and the geometrical features of a door are used to detect doors. To detect the cliff area and robust visual features, the tilting laser scanner and SIFT features are used, respectively. The proposed method was verified by various experiments and showed that the robot could build a semantic map autonomously in various indoor environments.

Multi-Path Feature Fusion Module for Semantic Segmentation (다중 경로 특징점 융합 기반의 의미론적 영상 분할 기법)

  • Park, Sangyong;Heo, Yong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In this paper, we present a new architecture for semantic segmentation. Semantic segmentation aims at a pixel-wise classification which is important to fully understand images. Previous semantic segmentation networks use features of multi-layers in the encoder to predict final results. However, they do not contain various receptive fields in the multi-layers features, which easily lead to inaccurate results for boundaries between different classes and small objects. To solve this problem, we propose a multi-path feature fusion module that allows for features of each layers to contain various receptive fields by use of a set of dilated convolutions with different dilatation rates. Various experiments demonstrate that our method outperforms previous methods in terms of mean intersection over unit (mIoU).

Document Clustering Using Semantic Features and Fuzzy Relations

  • Kim, Chul-Won;Park, Sun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • Traditional clustering methods are usually based on the bag-of-words (BOW) model. A disadvantage of the BOW model is that it ignores the semantic relationship among terms in the data set. To resolve this problem, ontology or matrix factorization approaches are usually used. However, a major problem of the ontology approach is that it is usually difficult to find a comprehensive ontology that can cover all the concepts mentioned in a collection. This paper proposes a new document clustering method using semantic features and fuzzy relations for solving the problems of ontology and matrix factorization approaches. The proposed method can improve the quality of document clustering because the clustered documents use fuzzy relation values between semantic features and terms to distinguish clearly among dissimilar documents in clusters. The selected cluster label terms can represent the inherent structure of a document set better by using semantic features based on non-negative matrix factorization, which is used in document clustering. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

Query-based Document Summarization using Pseudo Relevance Feedback based on Semantic Features and WordNet (의미특징과 워드넷 기반의 의사 연관 피드백을 사용한 질의기반 문서요약)

  • Kim, Chul-Won;Park, Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1517-1524
    • /
    • 2011
  • In this paper, a new document summarization method, which uses the semantic features and the pseudo relevance feedback (PRF) by using WordNet, is introduced to extract meaningful sentences relevant to a user query. The proposed method can improve the quality of document summaries because the inherent semantic of the documents are well reflected by the semantic feature from NMF. In addition, it uses the PRF by the semantic features and WordNet to reduce the semantic gap between the high level user's requirement and the low level vector representation. The experimental results demonstrate that the proposed method achieves better performance that the other methods.

Semantic-based Query Generation For Information Retrieval

  • Shin Seung-Eun;Seo Young-Hoon
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.39-43
    • /
    • 2005
  • In this paper, we describe a generation mechanism of semantic-based queries for high accuracy information retrieval and question answering. It is difficult to offer the correct retrieval result because general information retrieval systems do not analyze the semantic of user's natural language question. We analyze user's question semantically and extract semantic features, and we .generate semantic-based queries using them. These queries are generated using the se-mantic-based question analysis grammar and the query generation rule. They are represented as semantic features and grammatical morphemes that consider semantic and syntactic structure of user's questions. We evaluated our mechanism using 100 questions whose answer type is a person in the TREC-9 corpus and Web. There was a 0.28 improvement in the precision at 10 documents when semantic-based queries were used for information retrieval.

  • PDF