• Title/Summary/Keyword: Semantic Visualization

Search Result 81, Processing Time 0.026 seconds

Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea: focused on LDA and HDP (국내 기록관리학 연구동향 분석을 위한 토픽모델링 기법 비교 - LDA와 HDP를 중심으로 -)

  • Park, JunHyeong;Oh, Hyo-Jung
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.4
    • /
    • pp.235-258
    • /
    • 2017
  • The purpose of this study is to analyze research trends of archives management in Korea by comparing LDA (Latent Semantic Allocation) topic modeling, which is the most famous method in text mining, and HDP (Hierarchical Dirichlet Process) topic modeling, which is developed LDA topic modeling. Firstly we collected 1,027 articles related to archives management from 1997 to 2016 in two journals related with archives management and four journals related with library and information science in Korea and performed several preprocessing steps. And then we conducted LDA and HDP topic modelings. For a more in-depth comparison analysis, we utilized LDAvis as a topic modeling visualization tool. At the results, LDA topic modeling was influenced by frequently keywords in all topics, whereas, HDP topic modeling showed specific keywords to easily identify the characteristics of each topic.

Social media big data analysis of Z-generation fashion (Z세대 패션에 대한 소셜미디어의 빅데이터 분석)

  • Sung, Kwang-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.22 no.3
    • /
    • pp.49-61
    • /
    • 2020
  • This study analyzed the social media accounts and performed a Big Data analysis of Z-generation fashion using Textom Text Mining Techniques program and Ucinet Big Data analysis program. The research results are as follows: First, as a result of keyword analysis on 67.646 Z-generation fashion social media posts over the last 5 years, 220,211 keywords were extracted. Among them, 67 major keywords were selected based on the frequency of co-occurrence being greater than more than 250 times. As the top keywords appearing over 1000 times, were the most influential as the number of nodes connected to 'Z generation' (29595 times) are overwhelmingly, and was followed by 'millennials'(18536 times), 'fashion'(17836 times), and 'generation'(13055 times), 'brand'(8325 times) and 'trend'(7310 times) Second, as a result of the analysis of Network Degree Centrality between the key keywords for the Z-generation, the number of nodes connected to the "Z-generation" (29595 times) is overwhelmingly large. Next, many 'millennial'(18536 times), 'fashion'(17836 times), 'generation'(13055 times), 'brand'(8325 times), 'trend'(7310 times), etc. appear. These texts are considered to be important factors in exploring the reaction of social media to the Z-generation. Third, through the analysis of CONCOR, text with the structural equivalence between major keywords for Gen Z fashion was rearranged and clustered. In addition, four clusters were derived by grouping through network semantic network visualization. Group 1 is 54 texts, 'Diverse Characteristics of Z-Generation Fashion Consumers', Group 2 is 7 Texts, 'Z-Generation's teenagers Fashion Powers', Group 3 is 8 Texts, 'Z-Generation's Celebrity Fashions' Interest and Fashion', Group 4 named 'Gucci', the most popular luxury fashion of the Z-generation as one text.

Color Recommendation for Text Based on Colors Associated with Words

  • Liba, Saki;Nakamura, Tetsuaki;Sakamoto, Maki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • In this paper, we propose a new method to select colors representing the meaning of text contents based on the cognitive relation between words and colors, Our method is designed on the previous study revealing the existence of crucial words to estimate the colors associated with the meaning of text contents, Using the associative probability of each color with a given word and the strength of color association of the word, we estimate the probability of colors associated with a given text. The goal of this study is to propose a system to recommend the cognitively plausible colors for the meaning of the input text. To build a versatile and efficient database used by our system, two psychological experiments were conducted by using news site articles. In experiment 1, we collected 498 words which were chosen by the participants as having the strong association with color. Subsequently, we investigated which color was associated with each word in experiment 2. In addition to those data, we employed the estimated values of the strength of color association and the colors associated with the words included in a very large corpus of newspapers (approximately 130,000 words) based on the similarity between the words obtained by Latent Semantic Analysis (LSA). Therefore our method allows us to select colors for a large variety of words or sentences. Finally, we verified that our system cognitively succeeded in proposing the colors associated with the meaning of the input text, comparing the correct colors answered by participants with the estimated colors by our method. Our system is expected to be of use in various types of situations such as the data visualization, the information retrieval, the art or web pages design, and so on.

An SNS and Web based BDAS design for On-Line Marketing Strategy (온라인 마케팅 전략을 위한 SNS와 Web기반 BDAS(Big data Data Analysis Scheme) 설계)

  • Jeong, Yi-Na;Lee, Byung-Kwan;Park, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.141-148
    • /
    • 2015
  • This paper proposes the BDAS(Big Data analysis Scheme) design that extracts the real time shared information from SNS and Web, analyzes the extracted data rapidly for customers, and makes an on-line marketing strategy efficiently. First, the BDAS collects the data shared in SNS and Web. Second, it provides the result of visualization by analyzing the semantics of the collected data as positive or negative. Therefore, because the BDAS ensures an average 90% accuracy in judging the semantics about the shared SNA and Web data, it can judge customer's propensity accurately and be used for on-line marketing strategy efficiently.

An XML Database System for 3-Dimensional Graphic Images (3차원 그래픽 이미지를 위한 XML 데이타베이스 시스템)

  • Hwang, Jong-Ha;Hwang, Su-Chan
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.110-118
    • /
    • 2002
  • This paper presents a 3-D graphic database system based on XML that supports content-based retrievals of 3-D images, Most of graphics application systems are currently centered around the processing of 2-D images and research works on 3-D graphics are mainly concerned about the visualization aspects of 3-D image. They do not support the semantic modeling of 3-D objects and their spatial relations. In our data model, 3-D images are represented as compositions of 3-D graphic objects with associated spatial relations. Complex 3-D objects are mode]ed using a set of primitive 3-D objects rather than the lines and polygons that are found in traditional graphic systems. This model supports content-based retrievals of scenes containing a particular object or those satisfying certain spatial relations among the objects contained in them. 3-D images are stored in the database as XML documents using 3DGML DTD that are developed for modeling 3-D graphic data. Finally, this paper describes some examples of query executed in our Web-based prototype database system.

A Study on the Visualization of Paralinguistic Phonetic Information for Creative Motion Typography (창의적 모션 타이포그라피를 위한 준 음성정보의 시각화 연구)

  • Park Sun-Mi;Nam Yong-Hyun
    • Journal of Game and Entertainment
    • /
    • v.2 no.2
    • /
    • pp.61-69
    • /
    • 2006
  • Along with advance in visual culture, the importance of motion graphic has been increasingly emphasized day by day, which can maximize information delivery using image illustration and typography, graphic factors of images. In addition, we can easily see increasing cases where what a designer intends is visualized using creative typography in diverse mass media such as TV commercials, movies or web. Thanks to the effects of this trend, various ways of manufacturing works have been proposed in the field of motion typography by applying diverse factors including verbal ones, time, form, motion, colors, and sound for the purpose of expressing formless semantic notions through visual form of typography. However, physiological features such as sex, age, health status, pathological conditions, and body size can have a bigger effect on the process of real communication. Therefore, if property of quasi-verbal sound can be reflected appropriately in motion typography where communication is expressed only by visual form, it can enable people to understand what a designer intends faster and more exactly.

  • PDF

A Study on the Consumer's Perception of HiSeoul Fashion Show Using Big Data Analysis (빅데이터 분석을 활용한 하이서울패션쇼에 대한 소비자 인식 조사)

  • Han, Ki Hyang
    • Journal of Fashion Business
    • /
    • v.23 no.5
    • /
    • pp.81-95
    • /
    • 2019
  • The purpose of this study is to research consumers' perception of the HiSeoul fashion show, which is being used by new designers as a means of promotion, and to propose a strategy for revitalizing new designer brands. This was done in order to secure basic data from fashion consumers, to help guide marketing strategies and promote rising designers. In this research, the consumers' perception of HiSeoul fashion show was verified using text-mining, data refinement and word clouding that was undertaken by TEXTOM3.0. Also, semantic network analysis, CONCOR analysis and visualization of the analysis results were performed using Ucinet 6.0 and NetDraw. "HiSeoul fashion show" was used as the keyword for text-mining and data was collected from March 1, 2018 to April 30, 2019. Using frequency analysis, TF-IDF, and N-gram, it was also shown that consumers are aware of places where shows are held, such as DDP and Igansumun. It was also revealed that consumers recognize rising designer brands, designer's names, the names of guests attending the show and the photo times. This study is meaningful in that it not only confirmed consumers' interest in new designer brands participating in the HiSeoul Fashion Show through big data but also confirmed that it is available as a marketing strategy to boost brand sales. This study suggests using HiSeoul show room to induce consumer sales, or inviting guests that match the brand image to promote them on SNS on the day the show is held for a marketing strategy.

A study on the User Experience at Unmanned Checkout Counter Using Big Data Analysis (빅데이터를 활용한 편의점 간편식에 대한 의미 분석)

  • Kim, Ae-sook;Ryu, Gi-hwan;Jung, Ju-hee;Kim, Hee-young
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.375-380
    • /
    • 2022
  • The purpose of this study is to find out consumers' perception and meaning of convenience store convenience food by using big data. For this study, NNAVER and Daum analyzed news, intellectuals, blogs, cafes, intellectuals(tips), and web documents, and used 'convenience store convenience food' as keywords for data search. The data analysis period was selected as 3 years from January 1, 2019 to December 31, 2021. For data collection and analysis, frequency and matrix data were extracted using TEXTOM, and network analysis and visualization analysis were conducted using the NetDraw function of the UCINET 6 program. As a result, convenience store convenience foods were clustered into health, diversity, convenience, and economy according to consumers' selection attributes. It is expected to be the basis for the development of a new convenience menu that pursues convenience and convenience based on consumers' meaning of convenience store convenience foods such as appropriate prices, discount coupons, and events.

A Big Data Analysis of Public Interest in Defense Reform 2.0 and Suggestions for Policy Completion

  • Kim, Tae Kyoung;Kang, Wonseok
    • Journal of East Asia Management
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2023
  • This study conducted a big data analysis study through text mining and semantic network analysis to explore the perception of defense reform 2.0. The collected data were analyzed with the top 70 keywords as the appropriate range for network visualization. Through word frequency analysis, connection centrality analysis, and an N-gram analysis, we identified issues that received much attention such as troop reduction, shortening of military service period, dismantling of the border area unit, and returning wartime operational control. In particular, the results of clustering words through CONCOR analysis showed that there was a great interest in pursuing the technical group, concerns about military capacity reduction, and reorganization of manpower structure. The results of the analysis through text mining techniques are as follows. First, it was found that there was a lack of awareness about measures to reinforce the reduced troops while receiving much attention to the reduction of troops in Defense Reform 2.0. Second, it was found that it is necessary to actively communicate with the local community due to the deconstruction and movement of the border area units, such as the decrease of the population of the region and the collapse of the local commercial area. Third, it was judged that it is necessary to show substantial results through the promotion of barracks culture and the defense industry, which showed that there was less interest than military structure and defense operation from the people and the introduction of active policies. Through this study, we analyzed the public's interest in defense reform 2.0, which is a representative defense policy, and suggested a plan to draw support for national policy.

Fashion attribute-based mixed reality visualization service (패션 속성기반 혼합현실 시각화 서비스)

  • Yoo, Yongmin;Lee, Kyounguk;Kim, Kyungsun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.2-5
    • /
    • 2022
  • With the advent of deep learning and the rapid development of ICT (Information and Communication Technology), research using artificial intelligence is being actively conducted in various fields of society such as politics, economy, and culture and so on. Deep learning-based artificial intelligence technology is subdivided into various domains such as natural language processing, image processing, speech processing, and recommendation system. In particular, as the industry is advanced, the need for a recommendation system that analyzes market trends and individual characteristics and recommends them to consumers is increasingly required. In line with these technological developments, this paper extracts and classifies attribute information from structured or unstructured text and image big data through deep learning-based technology development of 'language processing intelligence' and 'image processing intelligence', and We propose an artificial intelligence-based 'customized fashion advisor' service integration system that analyzes trends and new materials, discovers 'market-consumer' insights through consumer taste analysis, and can recommend style, virtual fitting, and design support.

  • PDF