• Title/Summary/Keyword: Semantic Soft Segmentation

Search Result 4, Processing Time 0.025 seconds

Object Segmentation Using ESRGAN and Semantic Soft Segmentation (ESRGAN과 Semantic Soft Segmentation을 이용한 객체 분할)

  • Dongsik Yoon;Noyoon Kwak
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.97-104
    • /
    • 2023
  • This paper is related to object segmentation using ESRGAN(Enhanced Super Resolution GAN) and SSS(Semantic Soft Segmentation). The segmentation performance of the object segmentation method using Mask R-CNN and SSS proposed by the research team in this paper is generally good, but the segmentation performance is poor when the size of the objects is relatively small. This paper is to solve these problems. The proposed method aims to improve segmentation performance of small objects by performing super-resolution through ESRGAN and then performing SSS when the size of an object detected through Mask R-CNN is below a certain threshold. According to the proposed method, it was confirmed that the segmentation characteristics of small-sized objects can be improved more effectively than the previous method.

Performance Improvement of Object Segmentation Using ESRGAN and Semantic Soft Segmentation (ESRGAN과 Semantic Soft Segmentation을 이용한 객체 분할의 성능 개선)

  • Yoon, DongSik;Kwak, Noyoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.468-471
    • /
    • 2020
  • 본 논문은 ESRGAN(Enhanced Super Resolution GAN)과 Semantic Soft Segmentation을 이용한 객체 분할의 성능 개선에 관한 것이다. 본 논문의 연구진이 이미 제안한 Mask R-CNN과 Semantic Soft Segmentation을 이용한 객체 분할 방법은 전반적으로 객체 분할 성능이 양호한 반면, 객체의 크기가 상대적으로 작으면 분할 성능이 저조해지는 문제점이 있었다. 본 논문은 이러한 문제점을 해결하기 위한 것으로, Mask R-CNN을 통해 검출된 객체의 크기가 일정 기준치 이하인 경우, ESRGAN을 통해 초해상화를 수행한 후, Semantic Soft Segmentation을 수행함으로써 소형 객체의 분할 성능을 개선함에 그 목적이 있다. 제안된 방법에 따르면, 기존의 방볍에 비해 크기가 작은 객체의 분할 특성을 좀 더 효과적으로 개선할 수 있음을 확인할 수 있었다.

Semantic Segmentation of Clouds Using Multi-Branch Neural Architecture Search (멀티 브랜치 네트워크 구조 탐색을 사용한 구름 영역 분할)

  • Chi Yoon Jeong;Kyeong Deok Moon;Mooseop Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.143-156
    • /
    • 2023
  • To precisely and reliably analyze the contents of the satellite imagery, recognizing the clouds which are the obstacle to gathering the useful information is essential. In recent times, deep learning yielded satisfactory results in various tasks, so many studies using deep neural networks have been conducted to improve the performance of cloud detection. However, existing methods for cloud detection have the limitation on increasing the performance due to the adopting the network models for semantic image segmentation without modification. To tackle this problem, we introduced the multi-branch neural architecture search to find optimal network structure for cloud detection. Additionally, the proposed method adopts the soft intersection over union (IoU) as loss function to mitigate the disagreement between the loss function and the evaluation metric and uses the various data augmentation methods. The experiments are conducted using the cloud detection dataset acquired by Arirang-3/3A satellite imagery. The experimental results showed that the proposed network which are searched network architecture using cloud dataset is 4% higher than the existing network model which are searched network structure using urban street scenes with regard to the IoU. Also, the experimental results showed that the soft IoU exhibits the best performance on cloud detection among the various loss functions. When comparing the proposed method with the state-of-the-art (SOTA) models in the field of semantic segmentation, the proposed method showed better performance than the SOTA models with regard to the mean IoU and overall accuracy.

Automatic Image Segmention of Brain CT Image (뇌조직 CT 영상의 자동영상분할)

  • 유선국;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.317-322
    • /
    • 1989
  • In this paper, brain CT images are automatically segmented to reconstruct the 3-D scene from consecutive CT sections. Contextual segmentation technique was applied to overcome the partial volume artifact and statistical fluctuation phenomenon of soft tissue images. Images are hierarchically analyzed by region growing and graph editing techniques. Segmented regions are discriptively decided to the final organs by using the semantic informations.

  • PDF