• Title/Summary/Keyword: Semantic Search Engine

Search Result 41, Processing Time 0.022 seconds

An Ontology-based Cloud Storage for Reusing Weapon Models (무기체계 모델 재사용을 위한 온톨로지 기반 클라우드 저장소 연구)

  • Kim, Tae-Sup;Park, Chan-Jong;Kim, Hyun-Hwi;Lee, Kang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • Defense Modeling and Simulation aims to provide a computerized war environment where we can analyze weapon systems realistically. As we invest significant efforts to represent weapon systems and their operational environments on the computer, there has been an increasing need to reuse predefined weapon models. In this paper, we introduce OB-Cloud (Ontology-Based Cloud storage) to utilize predefined weapon models. OB-Cloud has been implemented as a repository for OpenSIM (Open Simulation engine for Interoperable Models), which is an integrated simulation environment for aiding weapons effectiveness analysis, under the development of our research team. OB-Cloud uses weapon ontology and thesaurus dictionaries to provide semantic search for reusable models. In this paper, we present repository services of OB-Cloud, including registration of weapon models and semantic retrieval of similar models, and illustrate how we can improve reusability of weapon models, through an example.

Personalized Document Snippet Extraction Method using Fuzzy Association and Pseudo Relevance Feedback (의사연관 피드백과 퍼지 연관을 이용한 개인화 문서 스니핏 추출 방법)

  • Park, Seon;Jo, Gwang-Mun;Yang, Hu-Yeol;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.137-142
    • /
    • 2012
  • Snippet is a summaries information of representing web pages which search engine provides user. Snippet and page rank in search engine abundantly influence user for visiting web pages. User sometime visits the wrong page with respect to user intention when uses snippet. The snippet extraction method is difficult to accurate comprehending user intention. In order to solve above problem, this paper proposes a new snippet extraction method using fuzzy association and pseudo relevance feedback. The proposed method uses pseudo relevance feedback to expand the use's query. It uses the fuzzy association between the expanded query and the web pages to extract snippet to be well reflected semantic user's intention. The experimental results demonstrate that the proposed method can achieve better snippet extraction performance than the other methods.

Improving Performance of Search Engine Using Category based Evaluation (범주 기반 평가를 이용한 검색시스템의 성능 향상)

  • Kim, Hyung-Il;Yoon, Hyun-Nim
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • In the current Internet environment where there is high space complexity of information, search engines aim to provide accurate information that users want. But content-based method adopted by most of search engines cannot be used as an effective tool in the current Internet environment. As content-based method gives different weights to each web page using morphological characteristics of vocabulary, the method has its drawbacks of not being effective in distinguishing each web page. To resolve this problem and provide useful information to the users, this paper proposes an evaluation method based on categories. Category-based evaluation method is to extend query to semantic relations and measure the similarity to web pages. In applying weighting to web pages, category-based evaluation method utilizes user response to web page retrieval and categories of query and thus better distinguish web pages. The method proposed in this paper has the advantage of being able to effectively provide the information users want through search engines and the utility of category-based evaluation technique has been confirmed through various experiments.

A Korean Document Sentiment Classification System based on Semantic Properties of Sentiment Words (감정 단어의 의미적 특성을 반영한 한국어 문서 감정분류 시스템)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper proposes how to improve performance of the Korean document sentiment-classification system using semantic properties of the sentiment words. A sentiment word means a word with sentiment, and sentiment features are defined by a set of the sentiment words which are important lexical resource for the sentiment classification. Sentiment feature represents different sentiment intensity in general field and in specific domain. In general field, we can estimate the sentiment intensity using a snippet from a search engine, while in specific domain, training data can be used for this estimation. When the sentiment intensity of the sentiment features are estimated, it is called semantic orientation and is used to estimate the sentiment intensity of the sentences in the text documents. After estimating sentiment intensity of the sentences, we apply that to the weights of sentiment features. In this paper, we evaluate our system in three different cases such as general, domain-specific, and general/domain-specific semantic orientation using support vector machine. Our experimental results show the improved performance in all cases, and, especially in general/domain-specific semantic orientation, our proposed method performs 3.1% better than a baseline system indexed by only content words.

Improving Performance of Web Search Engine using Query Word Senses and User Feedback (질의어 의미정보와 사용자 피드백을 이용한 웹 검색엔진의 성능향상)

  • Yoon, Sung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.280-285
    • /
    • 2007
  • This paper proposes a technique improving performance using word senses and user feedback in web information retrieval, compared with the retrieval based on ambiguous user query and index. Disambiguation using word senses is very important processing for improving performance by eliminating the irrelevant pages from the result. According to semantic categories of nouns which are used as index for retrieval, we build the word sense knowledge-base and categorize the web pages. It can improve the performance of retrieval system with user feedback deciding the query sense and information seeking behavior to web pages.

  • PDF

A Design and Implementation of the Semantic Search Engine (시멘틱 검색 엔진 설계 및 구현)

  • Heo, Sun-Young;Kim, Eun-Gyung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.331-335
    • /
    • 2008
  • 시맨틱 웹은 정보의 의미를 개념으로 정의하고 개념들 간의 관계성을 표현함으로써, 문서들 간의 단순 연결이 아닌 의미 연결을 통해서 보다 정확하고 효율적인 정보 검색이 가능하게 된다. 이러한 시맨틱 웹의 비전이 구체화되기 위해서는 웹 온톨로지(Web Ontology)를 기반으로 의미 정보로 구성된 시맨틱 문서들에 대한 추론을 통해서 웹상에 존재하는 엄청난 정보들 간의 관련성을 파악하고 사용자가 요구하는 정보를 보다 효율적으로 검색할 수 있는 시스템이 필수적이다. W3C에서 제안한 OWL은 대표적인 온톨로지 언어이다. 시맨틱 웹 상에서 OWL 데이타를 효율적으로 검색하기 위해서는 잘 구성되어진 저장 스키마를 구축해야 한다. 본 논문에서는 Jena2의 경우, 단일 테이블에 문서의 정보를 저장하기 때문에 단순 선택 연산 (Simple Selection), 조인 연산이 요구되는 질의에 대한 성능이 저하되고 대용량의 OWL데이터의 처리에 있어 성능이 저하되는 문제를 해결하기 위하여 본 논문에서는 OWL 문서의 의미를 Class, Property, Individual로 분류하여 각각의 데이터 정보들을 테이블에 저장하기 위한 다중 변환기와 OWL 변환기 기능을 가진 시멘텍 검색 엔진을 설계 및 구현하였다. 본 검색 엔진을 테스트한 결과, 단순정보검색 질의 시 Jena2에서 비정규화된 테이블 구조로 저장할 때보다 질의 응답 속도를 향상 시킬 수 있었고, 조인 연산 시 두 테이블의 크기로 인한 조인비용이 발생하는 문제점을 해결함으로써 빠른 검색 및 질의 속도를 보장할 수 있었다.

  • PDF

Snippet Extraction Method using Fuzzy Implication Operator and Relevance Feedback (연관 피드백과 퍼지 함의 연산자를 이용한 스니핏 추출 방법)

  • Park, Sun;Shim, Chun-Sik;Lee, Seong-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.424-431
    • /
    • 2012
  • In information retrieval, search engine provide the rank of web page and the summary of the web page information to user. Snippet is a summaries information of representing web pages. Visiting the web page by the user is affected by the snippet. User sometime visits the wrong page with respect to user intention when uses snippet. The snippet extraction method is difficult to accurate comprehending user intention. In order to solve above problem, this paper proposes a new snippet extraction method using fuzzy implication operator and relevance feedback. The proposed method uses relevance feedback to expand the use's query. The method uses the fuzzy implication operator between the expanded query and the web pages to extract snippet to be well reflected semantic user's intention. The experimental results demonstrate that the proposed method can achieve better snippet extraction performance than the other methods.

Methods for Integration of Documents using Hierarchical Structure based on the Formal Concept Analysis (FCA 기반 계층적 구조를 이용한 문서 통합 기법)

  • Kim, Tae-Hwan;Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.63-77
    • /
    • 2011
  • The World Wide Web is a very large distributed digital information space. From its origins in 1991, the web has grown to encompass diverse information resources as personal home pasges, online digital libraries and virtual museums. Some estimates suggest that the web currently includes over 500 billion pages in the deep web. The ability to search and retrieve information from the web efficiently and effectively is an enabling technology for realizing its full potential. With powerful workstations and parallel processing technology, efficiency is not a bottleneck. In fact, some existing search tools sift through gigabyte.syze precompiled web indexes in a fraction of a second. But retrieval effectiveness is a different matter. Current search tools retrieve too many documents, of which only a small fraction are relevant to the user query. Furthermore, the most relevant documents do not nessarily appear at the top of the query output order. Also, current search tools can not retrieve the documents related with retrieved document from gigantic amount of documents. The most important problem for lots of current searching systems is to increase the quality of search. It means to provide related documents or decrease the number of unrelated documents as low as possible in the results of search. For this problem, CiteSeer proposed the ACI (Autonomous Citation Indexing) of the articles on the World Wide Web. A "citation index" indexes the links between articles that researchers make when they cite other articles. Citation indexes are very useful for a number of purposes, including literature search and analysis of the academic literature. For details of this work, references contained in academic articles are used to give credit to previous work in the literature and provide a link between the "citing" and "cited" articles. A citation index indexes the citations that an article makes, linking the articleswith the cited works. Citation indexes were originally designed mainly for information retrieval. The citation links allow navigating the literature in unique ways. Papers can be located independent of language, and words in thetitle, keywords or document. A citation index allows navigation backward in time (the list of cited articles) and forwardin time (which subsequent articles cite the current article?) But CiteSeer can not indexes the links between articles that researchers doesn't make. Because it indexes the links between articles that only researchers make when they cite other articles. Also, CiteSeer is not easy to scalability. Because CiteSeer can not indexes the links between articles that researchers doesn't make. All these problems make us orient for designing more effective search system. This paper shows a method that extracts subject and predicate per each sentence in documents. A document will be changed into the tabular form that extracted predicate checked value of possible subject and object. We make a hierarchical graph of a document using the table and then integrate graphs of documents. The graph of entire documents calculates the area of document as compared with integrated documents. We mark relation among the documents as compared with the area of documents. Also it proposes a method for structural integration of documents that retrieves documents from the graph. It makes that the user can find information easier. We compared the performance of the proposed approaches with lucene search engine using the formulas for ranking. As a result, the F.measure is about 60% and it is better as about 15%.

Digital Archives of Cultural Archetype Contents: Its Problems and Direction (디지털 아카이브즈의 문제점과 방향 - 문화원형 콘텐츠를 중심으로 -)

  • Hahm, Han-Hee;Park, Soon-Cheol
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.17 no.2
    • /
    • pp.23-42
    • /
    • 2006
  • This is a study of the digital archives of Culturecontent.com where 'Cultural Archetype Contents' are currently in service. One of the major purposes of our study is to point out problems in the current system and eventually propose improvements to the digital archives. The government launched a four-year project for developing the cultural archetype content sources and establishing its related business with the hope of enhancing the nation's competitiveness. More specifically, the project focuses on the production of source materials of cultural archetype contents in the subjects of Korea's history. tradition, everyday life. arts and general geographical books. In addition, through this project, the government also intends to establish a proper distribution system of digitalized culture contents and to control copyright issues. This paper analyzes the digital archives system that stores the culture content data that have been produced from 2002 to 2005 and evaluates the current system's weaknesses and strengths. The summary of our findings is as follows. First. the digital archives system does not contain a semantic search engine and therefore its full function is 1agged. Second, similar data is not classified into the same categories but into the different ones, thereby confusing and inconveniencing users. Users who want to find source materials could be disappointed by the current distributive system. Our paper suggests a better system of digital archives with text mining technology which consists of five significant intelligent process-keyword searches, summarization, clustering, classification and topic tracking. Our paper endeavors to develop the best technical environment for preserving and using culture contents data. With the new digitalized upgraded settings, users of culture contents data will discover a world of new knowledge. The technology we introduce in this paper will lead to the highest achievable digital intelligence through a new framework.

Ontology-based Course Mentoring System (온톨로지 기반의 수강지도 시스템)

  • Oh, Kyeong-Jin;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.149-162
    • /
    • 2014
  • Course guidance is a mentoring process which is performed before students register for coming classes. The course guidance plays a very important role to students in checking degree audits of students and mentoring classes which will be taken in coming semester. Also, it is intimately involved with a graduation assessment or a completion of ABEEK certification. Currently, course guidance is manually performed by some advisers at most of universities in Korea because they have no electronic systems for the course guidance. By the lack of the systems, the advisers should analyze each degree audit of students and curriculum information of their own departments. This process often causes the human error during the course guidance process due to the complexity of the process. The electronic system thus is essential to avoid the human error for the course guidance. If the relation data model-based system is applied to the mentoring process, then the problems in manual way can be solved. However, the relational data model-based systems have some limitations. Curriculums of a department and certification systems can be changed depending on a new policy of a university or surrounding environments. If the curriculums and the systems are changed, a scheme of the existing system should be changed in accordance with the variations. It is also not sufficient to provide semantic search due to the difficulty of extracting semantic relationships between subjects. In this paper, we model a course mentoring ontology based on the analysis of a curriculum of computer science department, a structure of degree audit, and ABEEK certification. Ontology-based course guidance system is also proposed to overcome the limitation of the existing methods and to provide the effectiveness of course mentoring process for both of advisors and students. In the proposed system, all data of the system consists of ontology instances. To create ontology instances, ontology population module is developed by using JENA framework which is for building semantic web and linked data applications. In the ontology population module, the mapping rules to connect parts of degree audit to certain parts of course mentoring ontology are designed. All ontology instances are generated based on degree audits of students who participate in course mentoring test. The generated instances are saved to JENA TDB as a triple repository after an inference process using JENA inference engine. A user interface for course guidance is implemented by using Java and JENA framework. Once a advisor or a student input student's information such as student name and student number at an information request form in user interface, the proposed system provides mentoring results based on a degree audit of current student and rules to check scores for each part of a curriculum such as special cultural subject, major subject, and MSC subject containing math and basic science. Recall and precision are used to evaluate the performance of the proposed system. The recall is used to check that the proposed system retrieves all relevant subjects. The precision is used to check whether the retrieved subjects are relevant to the mentoring results. An officer of computer science department attends the verification on the results derived from the proposed system. Experimental results using real data of the participating students show that the proposed course guidance system based on course mentoring ontology provides correct course mentoring results to students at all times. Advisors can also reduce their time cost to analyze a degree audit of corresponding student and to calculate each score for the each part. As a result, the proposed system based on ontology techniques solves the difficulty of mentoring methods in manual way and the proposed system derive correct mentoring results as human conduct.