• 제목/요약/키워드: Semantic Net

검색결과 250건 처리시간 0.022초

영어 FrameNet의 수동번역을 통한 한국어 FrameNet 구축 개발 (Construction of Korean FrameNet through Manual Translation of English FrameNet)

  • 남세진;김영식;박정열;함영균;황도삼;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.38-43
    • /
    • 2014
  • 본 논문은, 현존하는 영어 FrameNet 데이터를 기반으로 하여, FrameNet에 대한 전문 지식이 없는 번역가들을 통해 수행할 수 있는 한국어 FrameNet의 수동 구축 개발 과정을 제시한다. 우리 연구팀은 실제로, NLTK가 제공하는 영어 FrameNet 버전 1.5의 Full Text를 이루고 있는 5,945개의 문장들 중에서, Frame 데이터를 가진 4,025개의 문장들을 추출해내어, 번역가들에 의해 한국어로 수동번역 함으로써, 한국어 FrameNet 구축 개발을 향한 의미 있는 초석을 마련하였으며, 제시한 방법의 실효성을 입증하는 연구결과들을 웹에 공개하기도 하였다.

  • PDF

딥러닝 기반의 Semantic Segmentation을 위한 Residual U-Net에 관한 연구 (A Study on Residual U-Net for Semantic Segmentation based on Deep Learning)

  • 신석용;이상훈;한현호
    • 디지털융복합연구
    • /
    • 제19권6호
    • /
    • pp.251-258
    • /
    • 2021
  • 본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 향상시키기 위해 residual learning을 활용한 인코더-디코더 구조의 모델을 제안하였다. U-Net은 딥러닝 기반의 semantic segmentation 방법이며 자율주행 자동차, 의료 영상 분석과 같은 응용 분야에서 주로 사용된다. 기존 U-Net은 인코더의 얕은 구조로 인해 특징 압축 과정에서 손실이 발생한다. 특징 손실은 객체의 클래스 분류에 필요한 context 정보 부족을 초래하고 segmentation 정확도를 감소시키는 문제가 있다. 이를 개선하기 위해 제안하는 방법은 기존 U-Net에 특징 손실과 기울기 소실 문제를 방지하는데 효과적인 residual learning을 활용한 인코더를 통해 context 정보를 효율적으로 추출하였다. 또한, 인코더에서 down-sampling 연산을 줄여 특징맵에 포함된 공간 정보의 손실을 개선하였다. 제안하는 방법은 Cityscapes 데이터셋 실험에서 기존 U-Net 방법에 비해 segmentation 결과가 약 12% 향상되었다.

Case 기반 재사용에서 효율적인 의미망의 구축과 컴포넌트 검색 (Construction of Efficient Semantic Net and Component Retrieval in Case-Based Reuse)

  • 한정수
    • 한국콘텐츠학회논문지
    • /
    • 제6권3호
    • /
    • pp.20-27
    • /
    • 2006
  • 본 연구는 객체 지향 소스 코드의 검색과 재사용을 효율적으로 수행할 수 있는 의미망을 구축하였다. 이를 위하여 각 노드 간 객체지향 상속의 개념을 표현할 수 있도록 의미망의 초기 관련값을 시소러스로 구축하였다. 또한, 의미망의 노드와 간선을 활성화시키고 활성값을 전파시키기 위해 사용되는 스프레딩 엑티베이션 방법의 단점을 보완하여 스프레딩 엑티베이션의 성능은 최대한 유지하면서 검색 속도를 향상 시킬 수 있는 방법을 제안하였다.

  • PDF

딥러닝 기반 거리 영상의 Semantic Segmentation을 위한 Atrous Residual U-Net (Atrous Residual U-Net for Semantic Segmentation in Street Scenes based on Deep Learning)

  • 신석용;이상훈;한현호
    • 융합정보논문지
    • /
    • 제11권10호
    • /
    • pp.45-52
    • /
    • 2021
  • 본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 개선하기 위한 Atrous Residual U-Net (AR-UNet)을 제안하였다. U-Net은 의료 영상 분석, 자율주행 자동차, 원격 감지 영상 등의 분야에서 주로 사용된다. 기존 U-Net은 인코더 부분에서 컨볼루션 계층 수가 적어 추출되는 특징이 부족하다. 추출된 특징은 객체의 범주를 분류하는 데 필수적이며, 부족할 경우 분할 정확도를 저하시키는 문제를 초래한다. 따라서 이 문제를 개선하기 위해 인코더에 residual learning과 ASPP를 활용한 AR-UNet을 제안하였다. Residual learning은 특징 추출 능력을 개선하고, 연속적인 컨볼루션으로 발생하는 특징 손실과 기울기 소실 문제 방지에 효과적이다. 또한 ASPP는 특징맵의 해상도를 줄이지 않고 추가적인 특징 추출이 가능하다. 실험은 Cityscapes 데이터셋으로 AR-UNet의 효과를 검증하였다. 실험 결과는 AR-UNet이 기존 U-Net과 비교하여 향상된 분할 결과를 보였다. 이를 통해 AR-UNet은 정확도가 중요한 여러 응용 분야의 발전에 기여할 수 있다.

의미특징과 워드넷 기반의 의사 연관 피드백을 사용한 질의기반 문서요약 (Query-based Document Summarization using Pseudo Relevance Feedback based on Semantic Features and WordNet)

  • 김철원;박선
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1517-1524
    • /
    • 2011
  • 본 논문은 의미특징과 워드넷 기반의 의사연관피드백을 이용하여 사용자의 질의에 관련 있는 의미 있는 문장을 추출하여 문서요약을 하는 새로운 방법을 제안한다. 제안된 방법은 비음수 행렬 분해로부터 유도된 의미특정이 문서의 잠재의미를 잘 나타나기 때문에 문서요약의 질을 향상할 수 있다. 또한 의미특정과 워드넷기반의 의사연관피드백을 이용하여서 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 유사도, 비음수행렬분해를 이용한 방법들에 비하여 좋은 성능을 보인다.

영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출 (Road Extraction from Images Using Semantic Segmentation Algorithm)

  • 오행열;전승배;김건;정명훈
    • 한국측량학회지
    • /
    • 제40권3호
    • /
    • pp.239-247
    • /
    • 2022
  • 현대에는 급속한 산업화와 인구 증가로 인해 도시들이 더욱 복잡해지고 있다. 특히 도심은 택지개발, 재건축, 철거 등으로 인해 빠르게 변화하는 지역에 해당한다. 따라서 자율주행에 필요한 정밀도로지도와 같은 다양한 목적을 위해 빠른 정보 갱신이 필요하다. 우리나라의 경우 기존 지도 제작 과정을 통해 지도를 제작하면 정확한 공간정보를 생성할 수 있으나 대상 지역이 넓은 경우 시간과 비용이 많이 든다는 한계가 있다. 지도 요소 중 하나인 도로는 인류 문명을 위한 많은 다양한 자원을 제공하는 중추이자 필수적인 수단에 해당한다. 따라서 도로 정보를 정확하고 신속하게 갱신하는 것이 중요하다. 이 목표를 달성하기 위해 본 연구는 Semantic Segmentation 알고리즘인 LinkNet, D-LinkNet 및 NL-LinkNet을 사용하여 광주광역시 도시철도 2호선 공사 현장을 촬영한 드론 정사영상에서 도로를 추출한 다음 성능이 가장 높은 모델에 하이퍼 파라미터 최적화를 적용하였다. 그 결과, 사전 훈련된 ResNet-34를 Encoder로 사용한 LinkNet 모델이 85.125 mIoU를 달성했다. 향후 연구 방향으로 최신 Semantic Segmentation 알고리즘 또는 준지도 학습 기반 Semantic Segmentation 기법을 사용하는 연구의 결과와의 비교 분석이 수행될 것이다. 본 연구의 결과는 기존 지도 갱신 프로세스의 속도를 개선하는 데 도움을 줄 수 있을 것으로 예상된다.

딥러닝 기반의 영상분할을 이용한 토지피복분류 (Land Cover Classification Using Sematic Image Segmentation with Deep Learning)

  • 이성혁;김진수
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.279-288
    • /
    • 2019
  • 본 연구에서는 항공정사영상을 이용하여 SegNet 기반의 의미분할을 수행하고, 토지피복분류에서의 그 성능을 평가하였다. 의미분할을 위한 분류 항목을 4가지(시가화건조지역, 농지, 산림, 수역)로 선정하였고, 항공정사영상과 세분류 토지피복도를 이용하여 총 2,000개의 데이터셋을 8:2 비율로 훈련(1,600개) 및 검증(400개)로 구분하여 구축하였다. 구축된 데이터셋은 훈련과 검증으로 나누어 학습하였고, 모델 학습 시 정확도에 영향을 미치는 하이퍼파라미터의 변화에 따른 검증 정확도를 평가하였다. SegNet 모델 검증 결과 반복횟수 100,000회, batch size 5에서 가장 높은 성능을 보였다. 이상과 같이 훈련된 SegNet 모델을 이용하여 테스트 데이터셋 200개에 대한 의미분할을 수행한 결과, 항목별 정확도는 농지(87.89%), 산림(87.18%), 수역(83.66%), 시가화건조지역(82.67%), 전체 분류정확도는 85.48%로 나타났다. 이 결과는 기존의 항공영상을 활용한 토지피복분류연구보다 향상된 정확도를 나타냈으며, 딥러닝 기반 의미분할 기법의 적용 가능성이 충분하다고 판단된다. 향후 다양한 채널의 자료와 지수의 활용과 함께 분류 정확도 향상에 크게 기여할 수 있을 것으로 기대된다.

논항 정보 기반 "요리 동사"의 어휘의미망 구축 방안 (The Construction of Semantic Networks for Korean "Cooking Verb" Based on the Argument Information.)

  • 이숙의
    • 한국어학
    • /
    • 제48권
    • /
    • pp.223-268
    • /
    • 2010
  • The purpose of this paper is to build a semantic networks of the 'cooking class' verb (based on 'CoreNet' of KAIST). This proceedings needs to adjust the concept classification. Then sub-categories of [Cooking] and [Foodstuff] hierarchy of CoreNet was adjusted for the construction of verb semantic networks. For the building a semantic networks, each meaning of 'Cooking verbs' of Korean has to be analyzed. This paper focused on the Korean 'heating' verbs and 'non-heating'verbs. Case frame structure and argument information were inserted for the describing verb information. This paper use a Propege 3.3 as a tool for building "cooking verb" semantic networks. Each verb and noun was inserted into it's class, and connected by property relation marker 'HasThemeAs', 'IsMaterialOf'.

소스코드 재사용을 위한 효율적인 의미망 구성에 관한 연구 (A Study on Efficient Construction of Sementic Net for Source Code Reuse)

  • 김귀정
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 춘계 종합학술대회 논문집
    • /
    • pp.475-479
    • /
    • 2005
  • 본 연구에서는 객체 지향 소스 코드의 검색과 재사용을 효율적으로 수행할 수 있는 의미망을 구축하였다. 이를 위하여 각 노드 간 객체지향 상속의 개념을 표현할 수 있도록 의미망의 초기 관련값을 시소러스로 구축하였다. 또한, 의미망의 노드와 간선을 활성화시키고 활성값을 전파 시키기 위해 사용되는 spreading activation 방법의 단점을 보완하여 spreading activation의 성능은 최대한 유지하면서 검색 속도를 향상 시킬 수 있는 방법을 제안하였다.

  • PDF

스피치 요약을 위한 태그의미분석과 잠재의미분석간의 비교 연구 (Comparing the Use of Semantic Relations between Tags Versus Latent Semantic Analysis for Speech Summarization)

  • 김현희
    • 한국문헌정보학회지
    • /
    • 제47권3호
    • /
    • pp.343-361
    • /
    • 2013
  • 본 연구는 스피치 요약을 위해서 태그를 확장하고 또한 태그 간의 의미적 관계 정보를 이용할 수 있는 태그의미분석 방법을 제안하고 평가하였다. 이를 위해서, 먼저 비디오 태그를 확장하고 태그 간의 의미적 관계를 분석하는데 있어서 플리커의 태그 클러스터와 워드넷의 동의어 정보가 얼마나 효과적으로 이용될 수 있는가 조사해 보았다. 그런 다음 태그의미분석 방법의 특성과 효율성을 조사해 보기 위해서 제안한 방법을 잠재의미분석(Latent Semantic Analysis) 방법과 비교해 보았다. 분석 결과, 플리커의 태그 클러스터는 효과적으로 이용되었지만 워드넷은 효과적으로 이용되지 못한 것으로 나타났다. F측정을 사용하여 두 방법의 효율성을 비교한 결과, 제안한 방법의 F값(0.27)이 잠재의미분석 방법의 F값(0.22)보다 높게 나타났다.