• Title/Summary/Keyword: Semantic Knowledge-based Model

Search Result 114, Processing Time 0.024 seconds

Constructing the Semantic Information Model using A Collective Intelligence Approach

  • Lyu, Ki-Gon;Lee, Jung-Yong;Sun, Dong-Eon;Kwon, Dai-Young;Kim, Hyeon-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1698-1711
    • /
    • 2011
  • Knowledge is often represented as a set of rules or a semantic network in intelligent systems. Recently, ontology has been widely used to represent semantic knowledge, because it organizes thesaurus and hierarchal information between concepts in a particular domain. However, it is not easy to collect semantic relationships among concepts. Much time and expense are incurred in ontology construction. Collective intelligence can be a good alternative approach to solve these problems. In this paper, we propose a collective intelligence approach of Games With A Purpose (GWAP) to collect various semantic resources, such as words and word-senses. We detail how to construct the semantic information model or ontology from the collected semantic resources, constructing a system named FunWords. FunWords is a Korean lexical-based semantic resource collection tool. Experiments demonstrated the resources were grouped as common nouns, abstract nouns, adjective and neologism. Finally, we analyzed their characteristics, acquiring the semantic relationships noted above. Common nouns, with structural semantic relationships, such as hypernym and hyponym, are highlighted. Abstract nouns, with descriptive and characteristic semantic relationships, such as synonym and antonym are underlined. Adjectives, with such semantic relationships, as description and status, illustration - for example, color and sound - are expressed more. Last, neologism, with the semantic relationships, such as description and characteristics, are emphasized. Weighting the semantic relationships with these characteristics can help reduce time and cost, because it need not consider unnecessary or slightly related factors. This can improve the expressive power, such as readability, concentrating on the weighted characteristics. Our proposal to collect semantic resources from the collective intelligence approach of GWAP (our FunWords) and to weight their semantic relationship can help construct the semantic information model or ontology would be a more effective and expressive alternative.

A Study on the Knowledge Organizing System of Research Papers Based on Semantic Relation of the Knowledge Structure (연구문헌의 지식구조를 반영하는 의미기반의 지식조직체계에 관한 연구)

  • Ko, Young-Man;Song, In-Seok
    • Journal of the Korean Society for information Management
    • /
    • v.28 no.1
    • /
    • pp.145-170
    • /
    • 2011
  • The purpose of this paper is to suggest a pilot model of knowledge organizing system which reflects the knowledge structure of research papers, using a case analysis on the "Korean Research Memory" of the National Research Foundation of Korea. In this paper, knowledge structure of the research papers in humanities and social science is described and the function of the "Korean Research Memory" for scholarly sense-making is analysed. In order to suggest the pilot model of the knowledge organizing system, the study also analysed the relation between indexed keyword and knowledge structure of research papers in the Korean Research Memory. As a result, this paper suggests 24 axioms and 11 inference rules for an ontology based on semantic relation of the knowledge structure.

Graph-based Segmentation for Scene Understanding of an Autonomous Vehicle in Urban Environments (무인 자동차의 주변 환경 인식을 위한 도시 환경에서의 그래프 기반 물체 분할 방법)

  • Seo, Bo Gil;Choe, Yungeun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In recent years, the research of 3D mapping technique in urban environments obtained by mobile robots equipped with multiple sensors for recognizing the robot's surroundings is being studied actively. However, the map generated by simple integration of multiple sensors data only gives spatial information to robots. To get a semantic knowledge to help an autonomous mobile robot from the map, the robot has to convert low-level map representations to higher-level ones containing semantic knowledge of a scene. Given a 3D point cloud of an urban scene, this research proposes a method to recognize the objects effectively using 3D graph model for autonomous mobile robots. The proposed method is decomposed into three steps: sequential range data acquisition, normal vector estimation and incremental graph-based segmentation. This method guarantees the both real-time performance and accuracy of recognizing the objects in real urban environments. Also, it can provide plentiful data for classifying the objects. To evaluate a performance of proposed method, computation time and recognition rate of objects are analyzed. Experimental results show that the proposed method has efficiently in understanding the semantic knowledge of an urban environment.

SymCSN : a Neuro-Symbolic Model for Flexible Knowledge Representation and Inference (SymCSN : 유연한 지식 표현 및 추론을 위한 기호-연결주의 모델)

  • 노희섭;안홍섭;김명원
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.4
    • /
    • pp.71-83
    • /
    • 1999
  • Conventional symbolic inference systems lack flexibility because they do not well reflect flexible semantic structure of knowledge and use symbolic logic for their basic inference mechanism. For solving this problem. we have recently proposed the 'Connectionist Semantic Network(CSN)' as a model for flexible knowledge representation and inference based on neural networks. The CSN is capable of carrying out both approximate reasoning and commonsense reasoning based on similarity and association. However. we have difficulties in representing general and structured high-level knowledge and variable binding using the connectionist framework of the CSN. In this paper. we propose a hybrid system called SymCSN(Symbolic CSN) that combines a symbolic module for representing general and structured high-level knowledge and a connectionist module for representing and learning low-level semantic structure Simulation results show that the SymCSN is a plausible model for human-like flexible knowledge representation and inference.

  • PDF

Conceptual Retrieval of Chinese Frequently Asked Healthcare Questions

  • Liu, Rey-Long;Lin, Shu-Ling
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.5 no.1
    • /
    • pp.49-68
    • /
    • 2015
  • Given a query (a health question), retrieval of relevant frequently asked questions (FAQs) is essential as the FAQs provide both reliable and readable information to healthcare consumers. The retrieval requires the estimation of the semantic similarity between the query and each FAQ. The similarity estimation is challenging as semantic structures of Chinese healthcare FAQs are quite different from those of the FAQs in other domains. In this paper, we propose a conceptual model for Chinese healthcare FAQs, and based on the conceptual model, present a technique ECA that estimates conceptual similarities between FAQs. Empirical evaluation shows that ECA can help various kinds of retrievers to rank relevant FAQs significantly higher. We also make ECA online to provide services for FAQ retrievers.

A Parallel Speech Recognition Model on Distributed Memory Multiprocessors (분산 메모리 다중프로세서 환경에서의 병렬 음성인식 모델)

  • 정상화;김형순;박민욱;황병한
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.44-51
    • /
    • 1999
  • This paper presents a massively parallel computational model for the efficient integration of speech and natural language understanding. The phoneme model is based on continuous Hidden Markov Model with context dependent phonemes, and the language model is based on a knowledge base approach. To construct the knowledge base, we adopt a hierarchically-structured semantic network and a memory-based parsing technique that employs parallel marker-passing as an inference mechanism. Our parallel speech recognition algorithm is implemented in a multi-Transputer system using distributed-memory MIMD multiprocessors. Experimental results show that the parallel speech recognition system performs better in recognition accuracy than a word network-based speech recognition system. The recognition accuracy is further improved by applying code-phoneme statistics. Besides, speedup experiments demonstrate the possibility of constructing a realtime parallel speech recognition system.

  • PDF

Saliency-Assisted Collaborative Learning Network for Road Scene Semantic Segmentation

  • Haifeng Sima;Yushuang Xu;Minmin Du;Meng Gao;Jing Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.861-880
    • /
    • 2023
  • Semantic segmentation of road scene is the key technology of autonomous driving, and the improvement of convolutional neural network architecture promotes the improvement of model segmentation performance. The existing convolutional neural network has the simplification of learning knowledge and the complexity of the model. To address this issue, we proposed a road scene semantic segmentation algorithm based on multi-task collaborative learning. Firstly, a depthwise separable convolution atrous spatial pyramid pooling is proposed to reduce model complexity. Secondly, a collaborative learning framework is proposed involved with saliency detection, and the joint loss function is defined using homoscedastic uncertainty to meet the new learning model. Experiments are conducted on the road and nature scenes datasets. The proposed method achieves 70.94% and 64.90% mIoU on Cityscapes and PASCAL VOC 2012 datasets, respectively. Qualitatively, Compared to methods with excellent performance, the method proposed in this paper has significant advantages in the segmentation of fine targets and boundaries.

An Exploratory Study on Applications of Semantic Web through the Technical Limitation Factors of Knowledge Management Systems (지식경영시스템의 기술적 한계요인분석을 통한 시맨틱 웹의 적용에 관한 탐색적 연구)

  • Joo Jae-Hun;Jang Gil-Sang
    • The Journal of Society for e-Business Studies
    • /
    • v.10 no.3
    • /
    • pp.111-134
    • /
    • 2005
  • Knowledge management is a core factor to achieve competitive advantage and improve the business performance. New information technology is also a core factor enabling the innovation of knowledge management. Semantic Web of which the goal is to realize machine-processable Web can't help affecting the knowledge management. Therefore, we empirically analyze the relationship between user's dissatisfaction and barriers or limitations of knowledge management and present methods allowing Semantic Web to overcome the limitations and to support knowledge management processes. Based on a questionnaire survey of 222 respondents, we found that the limitations of system qualities such as user inconvenience of knowledge management systems, search and integration limitations, and the limitations of knowledge qualities such as inappropriateness and untrust significantly affected the user dissatisfaction of knowledge management systems. Finally, we suggest a conceptual model of knowledge management systems of which components are resources, metadata, ontologies, and user & query layers.

  • PDF

Knowledge Driven Architectural Model to Support Smart Emergency Service in Web of Objects Based Iot Environment

  • Fattah, Sheik Mohammad Mostakim;Kibria, Muhammad Golam;Jeong, Kwanghyeon;Chong, Ilyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.408-418
    • /
    • 2015
  • Virtualizing The Physical Devices And Resources As Well As Conceptual Entities Would Form Vos And Cvos, Which Provides Dynamicity And Intelligence Through Composition And Collaboration For Emergency Services In WoO Based Smart Shopping Mall (WSSM). Semantic Ontology In WoO Platform Supports Dynamic Composition And Collaboration Among Objects, VOs And CVOs To Provide Intelligent Services. This Paper Proposes An Architectural Model Of WoO Platform To Support The Smart Emergency Services In Shopping Mall. A Semantic Ontology Model For Wssm, And Information Reusability And Interoperability Among The Vos And Their Functional Models Have Been Presented.

A Process-Centered Knowledge Model for Analysis of Technology Innovation Procedures

  • Chun, Seungsu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1442-1453
    • /
    • 2016
  • Now, there are prodigiously expanding worldwide economic networks in the information society, which require their social structural changes through technology innovations. This paper so tries to formally define a process-centered knowledge model to be used to analyze policy-making procedures on technology innovations. The eventual goal of the proposed knowledge model is to apply itself to analyze a topic network based upon composite keywords from a document written in a natural language format during the technology innovation procedures. Knowledge model is created to topic network that compositing driven keyword through text mining from natural language in document. And we show that the way of analyzing knowledge model and automatically generating feature keyword and relation properties into topic networks.