Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.195-198
/
2009
Recently, research in building up semantic web for exchanging information and knowledge is active. To make use of video contents as knowledge on semantic web, semantic-based retrieval should be preceded. At present, retrieval based on consentaneity between metadata and keyword is common used. In this paper, I propose ontolgy establishment which enlarge user participation and add usefulness value and history information. This will facilitate semantic retrieval as well as use of video contents by using collective Intelligence. The proposed ontology schema will allow semantic-based retrieval of video contents on semantic web get higher recall compared to current way of retrieval. Moreover it enables you to make use of various video contents as knowledge.
Proceedings of the Korea Information Processing Society Conference
/
2021.05a
/
pp.397-400
/
2021
To solve the problem that existing computing methods cannot adequately represent the semantic features of sentences, Siamese TRAT, a semantic feature extraction model based on Transformer encoder is proposed. The transformer model is used to fully extract the semantic information within sentences and carry out deep semantic coding for sentences. In addition, the interactive attention mechanism is introduced to extract the similar features of the association between two sentences, which makes the model better at capturing the important semantic information inside the sentence. As a result, it improves the semantic understanding and generalization ability of the model. The experimental results show that the proposed model can improve the accuracy significantly for the semantic similarity calculation task of English and Chinese, and is more effective than the existing methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.12
/
pp.5782-5799
/
2018
With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.
Semantic Role Decision defines the semantic relationship between the predicate and the arguments in natural language processing (NLP) tasks. The semantic role information and semantic category information should be used to make Semantic Role Decisions. The Sejong Electronic Dictionary contains frame information that is used to determine the semantic roles. In this paper, we propose a method to extend the Sejong electronic dictionary using word embedding and synonyms. The same experiment is performed using existing word-embedding and retrofitting vectors. The system performance of the semantic category assignment is 32.19%, and the system performance of the extended semantic category assignment is 51.14% for words that do not appear in the Sejong electronic dictionary of the word using the word embedding. The system performance of the semantic category assignment is 33.33%, and the system performance of the extended semantic category assignment is 53.88% for words that do not appear in the Sejong electronic dictionary of the vector using retrofitting. We also prove it is helpful to extend the semantic category word of the Sejong electronic dictionary by assigning the semantic categories to new words that do not have assigned semantic categories.
The Semantic Web has the objective of developing universal media in which machine-processable semantic information can be represented and shared, and it is therefore important to distribute ontologies that represent this kind of semantic information to the Web and make them available to multiple parties. However, the current ontology authoring tools are not operating on the Web, which makes it difficult to distribute ontologies directly to the Web and to create and edit them collaboratively with other people. This paper proposes a framework that facilitates the ontology construction and sharing, realizing easy distribution of ontologies to the Web. Wiki is one of the frameworks for collaborative construction and sharing of knowledge on the Web, and Wiki contents consist of natural language texts and simple markup language for visualization. For better collaboration in creating and sharing ontologies, this paper suggests the Semantic Wiki that embodies the Semantic Web features to the existing Wiki system. The Semantic Wiki framework facilitates the collaboration in ontology co-authoring and sharing for people, and at the same time, makes it possible for the agent software to easily manage the ontology information. Eventually, the Semantic Wiki system accomplishes various tasks including the semantic view, the semantic navigation, and the semantic query.
Journal of the Korea Society of Computer and Information
/
v.14
no.10
/
pp.31-41
/
2009
In the Semantic Web, it is possible to provide intelligent information retrieval and automated web services by defining a concept of information resource and representing a semantic relation between resources with meta data and ontology. It is very important to manage semantic data such as ontology and meta data efficiently for implementing essential functions of the Semantic Web. Thus we propose an index structure to support more accurate search results and efficient query processing by considering semantic and structural features of the semantic data. Especially we use a graph data model to express semantic and structural features of the semantic data and process various type of queries by using graph model based path expressions. In this paper the proposed index aims to distinguish our approach from earlier studies and involve the concept of the Semantic Web in its entirety by querying on primarily extracted structural path information and secondary extracted one through semantic inferences with ontology. In the experiments, we show that our approach is more accurate and efficient than the previous approaches and can be applicable to various applications in the Semantic Web.
It has been proposed diverse methods to use web information efficiently as the size of information is increasing. Most of search systems use a keyword-based method that mostly relies on syntactic information. They cannot utilize semantic information of documents and thus they could generate to users. To solve shortcoming in searching documents, a technique using the Semantic Web is suggested. A semantic web can find relevant information to users by employing metadata which are represented using standard ontologies. Each document is annotated with a metadata which can be reasoned by agents. In this paper, we propose a search system using semantic web technologies. Our semantic search system analyzes semantically questions that user input, and get resolution information that user want. To improve efficiency and accuracy of semantic search systems, this paper proposes DQL(DAML Query Language) engine that employs inference engine to execute reasoning and DQL converter that changes keyword form question of the user to DQL.
We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.
Shannon and Weaver's semantic communication has been actively studied in recent years as a new communication method to provide intelligent mobile services without requiring more capacity, infrastructure, and energy, even with limited radio resources. Considered a breakthrough beyond the Shannon paradigm, semantic communication aims at successfully transmitting semantic information conveyed by a source rather than accurately receiving each symbol or bit, regardless of meaning. Thus, semantic communication can lead to knowledgeable systems that significantly reduce data traffic because the transmitter only transmits the necessary information related to a specific task. This study describes essential differences between existing and semantic communication, research trends related to semantic communication principles and theory, performance metrics of semantic communication, semantic communication system framework, and future research and development issues.
Proceedings of the Korea Contents Association Conference
/
2009.05a
/
pp.283-288
/
2009
Semantic service can be defined as the service providing search API or reasoning API based on ontology and Web Services. It performs a pre-defined task by exploiting URI, classes, and properties. This study introduces a semantic service composition method based on a semantic broker referring ontology and management information of semantic services stored in a semantic service manager with requirements of the user. The requirements consist of input instances, an output class, a visualization type, semantic service names, and property names. This composition method provides dynamically generated semantic service pipelines including composit semantic services. The user can execute the pipelines provided by the semantic broker to find a meaningful semantic pipeline. After all, this study contributes to develop a system supporting human service planners who want to find composit semantic services among distributed semantic services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.